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Faculty of Science
Final Examination

Computer Science COMP-547A
Cryptography and Data Security

Examiner: Prof. Claude Crépeau Date: Dec 21%, 2006

Associate Examiner: Prof. David Avis Time: 14:00 —17:00
Room: ARTS 150

INSTRUCTION:

 This examination is worth 50% of your final grade.

 The total of all questions is 110 points.

» Each question heading contains (in parenthesis) a list of values for
each sub-questions.

* This is an open book examination. All documentation is permitted.
* Faculty standard calculator permitted only.

* The exam consists of 6 questions on 5 pages, title page included.

Suggestion: read all the
questions and their values
before you start.
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Question 1. Schnorr Identification (5+5+5* points)

Let p,q, oot be the public parameters of Schnorr identification scheme as published by the
TA. Let v=¢/ mod p be a Alice s public key. Consider an algorithm A such that

PROC A
INPUT: p,q,00t,v
OUTPUT: YyuLy2

with y; = log, p" for two arbitrary 71,7, in the range 0 < r,r, < 2.

 Show how to use algorithm A to cheat Schnorr s scheme with probability at least 2/2'.
 Show how to use algorithm A to compute v s discrete log with probability at least 1/4".

(*) Show how to use algorithm A to compute v's discrete log with probability at least 1/2".

Reminder

Protocol 9.8: SCHNORR IDENTIFICATION SCHEME
1. Alice chooses a random number, k, where 0 < k < ¢ — 1, and she
computes ¥ = a* mod p. She sends Cert(Alice) and + to Bob.

2. Bob verifies Alice’s public key, v, on the certificate Cert(Alice). Bob
chooses a random challenge r, 1 < r < 2t and he sends r to Alice.

3. Alice computes ¥ = k + ar mod ¢ and she sends the response y to Bob.

Bob verifies that v = a¥v" (mod p). If so, then Bob “accepts”; other-
wise, Bob “rejects.”

Question 2. Server-aided RSA signatures (4+4+7 points)

Let n=pq be the product of two large primes p = ¢ =2 (mod 3). Let (n,e=3) be the public
key of Bobs RSA digital signature scheme. Let d=3" mod ¢(n) be Bobs private key.
Suppose Bob is a low efficiency processor who trusts a very efficient server Ben enough
to give him his private key d.

» Explain why choosing exponent 3 is a better choice than an arbitrary RSA exponent.

» Explain why we requested p = ¢ =2 (mod 3).

* Show how to use RSA s multiplicative property in such a way that Bob can get Ben to
sign messages for him, but in a way that discloses no information about the actual

message to Ben. In other words, if M is the message Bob wants to sign and M is the
message signed by Ben then I(M;M )=0. Explain how little computation Bob needs to do.
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Question 3. Short and Sweet (5+5+5+6+5 points)
(justify briefly your answers)

(a)
Explain how a deterministic digital signature scheme resistant to existential forgeries is
analogous to a pseudo-random function generator but cannot possibly be one !

(b)
Define a family of functions F;:{0,1}*° — {0,1}** as Fi(x) = DES(k). Explain how you can
very efficiently discover that the family {F;} 0,164 iS not pseudo-random.

(c)
Define a hash function H:{0,1}*°— {0,1}'** as H(x||jx,) = AES, (x2). Show that this hash

function is useless for cryptographic purposes because the Preimage problem is easy.

(d)
Identify two finite fields where the number of elements is a 1025-bit number.
(If you cannot find explicit examples then, for partial credit, tell us how to compute them.)

(e)
Remember the algorithms to verify primitive roots and irreducible polynomials.
Why is factoring ¢-1 an important issue in the first but factoring » in the second is not ?

Reminder

Algorithm 2.1 ( Primitive(g) )

1: Letly, la, ..., Ik be the prime factors of g—1 and m; = qE—;L forl <i <k,
2: REPEAT

pick a random non-zero element g of Fy,

oW

UNTIL g™ # 1 for 1 <i <k,

5: RETURN g.

Algorithm 2.3 ( Rabin Irr(p,n) )

1: letly,l,..., 1 be the prime factors of n and m; =n/fl; for 1 <i <k,
2: REPEAT

3: pick a random polynomial h(z) of degree n— 1 over F,
g(z) «— z™ + h(zx),

4: UNTIL zF" mod g(z) = = and ged(g(z), 2P —z) =1 for 1 <i <k,

5: RETURN g.
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Question 4. Double RSA signature (12 points)

Let n=pq be the product of two large primes. Let (ed),(e ,d) be two pairs of RSA
public/private exponents mod n. Consider the DRSA (double-RSA) signature scheme of
a message m to be (m, m‘ mod n, m* mod n). Analyze the impact on existential-forgery
attacks on RSA signatures, in the context of this improved way of signing messages.

Question 5. AES key schedule (12 points)

Consider the AES key schedule for key of 128 bits. Currently the key schedule produces
44 words (32-bits each) such that the first 4 words are a copy of the original 128-bit key.
The next 40 words are produced by the forward key-schedule algorithm.

Show how to modified the key schedule algorithm in such a way that the original key is
the last 4 words and the rest of the schedule produces the unique sequence that ends
with these 4 words. In other words, give an explicit algorithm to compute the AES key
schedule backwards. (Assume you have inverse functions RotWordInv and SubWordInv.)

Reminder

Algorithm 3.6: KEYEXPANSION(key)

external ROTWORD, SUBWORD
RCon[1] + 01000000
RCon[2] + 02000000
RConl[3] + 04000000
RCon[4] < 08000000
RCon[5] + 10000000
RCon[6] + 20000000
RCon[7] < 40000000
RCon|8] + 80000000
RCon[9] < 1B000000
RCon|[10] < 36000000
fori < 0to3
do w[i] < (key[4i], key[4i + 1], key[4i + 2], key[4i + 3])
for i < 4to 43
temp < wfi — 1]
if i = 0 (mod 4)
then temp <+ SUBWORD(ROTWORD(temp)) & RConli/4]
wli] < w[i — 4] ® temp
return (w[0], ..., w[43])

do
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Question 6. Merkle-Damgard iterated hash (5+5+5+10+5* points)

Remember the Merkle-Damgard hash function, based on a fixed size ({0,1}"""— {0,1}")
compression function named compress.

» Show that for all n, d is non-negative and d<¢. Show that the binary representation of d
will always fit in #-1 bits (which is the size of y.1).

* Find an alternative coding scheme for 4 such that at most one bit of y,., is a one.

* Argue that the d least significant bits of y, and the m most significant bits of z; could be
any fixed patterns.

* Let t<2". Let w := “the binary representation of d on m bits”. Prove that if we set
zi=wl| 0 |[

(and the last block is y;, not y..1) then the security properties remain unaffected.

(*) Explain why an arbitrary compression function mapping {0,1}"”2"1 — {0,1}" cannot be
seriously considered collision-resistant.

Reminder

Algorithm 4.6: MERKLE-DAMGARD(z)

external compress
comment: compress : {0,1}™" — {0,1}™, where t > 2

n + |z|
k<« [n/(t—1)]
d<k(t—1)—n
fori < 1tok—1
do y; + 2
Yk < Tk " Od
Yk+1 < the binary representation of d
R a7
g1 + compress(2;)
for: < 1tok
do {Z*H—l —gi [ 11 yigs
git+1 + compress(z;iy1)
h(z) + gkt
return (h(x))




	Page #1
	Page #2
	Page #3
	Page #4
	Page #5

