

Cryptography and Data Security

COMP 547 section 001

21st Dec. 2021 9:00-12:00

EXAMINER: Prof. Claude Crépeau

ASSOC. EXAMINER:

Prof. Prakash Panangaden

	CLOSED BOOK	OPEN BOOK	X		
EXAM:		PRINTED ON	BOTH SIDES OF	THE PAGE 🔀	
	MULTIPLE CHOICE ANSWER SHEETS: YES NO X NOTE: The Examination Security Monitor Program detects pairs of students with unusually similar answer patterns on multiple-choice exams. Data generated by this program can be used as admissible evidence, either to initiate or corroborate an investigation or a charge of cheating under Section 17 of the Code of Student Conduct and Disciplinary Procedures.				
	ANSWER BOOKLET REQUI	RED:	YES 🗙	NO 🗆	
	EXTRA BOOKLETS PERMIT	TED:	YES 🗙	NO 🗆	
	ANSWER ON EXAM:		YES 🗆	NO 🕅	
	SHOULD THE EXAM BE:	RETURNED)	KEPT BY ST		
CRIB SHEETS:	PERMITTED Specifications: no page limit. NOT PERMITTED				
DICTIONARIES:		REGULAR	NOT PERMI	TTED 🗆	
CALCULATORS:	NOT PERMITTED				
	PERMITTED (Non-Programmable)		PERMITTED (Programmable)		
ANY SPECIAL INSTRUCTIONS: e.g. molecular models	This examination is worth 40% of your final grade.				
	 The exam consists of 2 questions (13 sub-questions) on 4 pages (title page included). 				

<u>Suggestion</u>: read all the questions and their values before you start answering.

(10+5+5+5+5+10+5+10+10+5 = 70 points) Question I. In c^ode [1] Let n = pq be an RSA modulus. Let $\mathbb{G}_n = \mathrm{GL}(2,\mathbb{Z}_n)$ be the set of invertible 2×2 matrices where all operations are modulo *n*. A useful fact is that $|\mathbb{G}_n| = n\phi(n)^2(p+1)(q+1)$. [10% **I)** Show how to factor *n* given *n* and $|\mathbb{G}_n|$. Let A and C be two non-commuting matrices of \mathbb{G}_n (such that $AC \neq CA$). **2)** Find a matrix $C \in \mathbb{G}_{15}$ that does not commute with $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. [5%] Let $B = C^{-1}A^{-1}C$ and $G \leftarrow C^r$ for some random $r \le n^4$ (a good approximation of $|\mathbb{G}_n|$). Let (n, A, B, G) be the public parameters of a public-key encryption scheme and C be the corresponding private key. **3)** Prove that GC = CG. [5%] Consider the encryption pre-processing as follows : Let $D \leftarrow G^s$ for some random $s \le n^4$ Let $E := D^{-1}AD$ Let $K := D^{-1}BD$ 4) Using big-O notation, establish a good upper bound on the running time of this [5% pre-processing algorithm.

Consider the <u>encryption</u>	<u>n</u> procedure	$Enc(\mu)$	as follows :
--------------------------------	--------------------	------------	--------------

Let $\mu' := K\mu K$ where μ is the plaintext 2×2 matrix. The pair (E, μ') is the cipher-text.

5) Establish a good upper bound on the running time of this encryption algorithm.

Consider the <u>decryption</u> procedure $Dec(E, \mu')$ as follows :

Let $L := C^{-1}EC$ Let $\mu := L\mu'L$ be the plaintext.

[10%]	6) Show that $L = K^{-1}$ and thus that $\text{Dec}(\text{Enc}(\mu)) = \mu$ for all matrix $\mu \in \mathbb{G}_n$.
[5%]	7) Establish a good upper bound on the running time of this decryption algorithm.
[10%]	8) Compare the performances of this scheme with the El-Gammal scheme.
[10%]	9) Formulate a computational assumption on which the security of this scheme rests

This scheme was briefly considered as a good alternative to the RSA/EI-Gammal public-key encryption scheme because of its relative efficiency. Unfortunately, it was soon after broken.

[5%]

[5%]

10) Prove that if you have any multiple C' := vC where v is a scalar modulo n, you can decrypt using C' instead of C. (Hint: set $L' := C'^{-1}EC'$.)

To obtain a multiple of C, notice that $CG - GC = CB - A^{-1}C = 0$ imposes 8 public linear constraints on $C = \begin{pmatrix} c_{00} & c_{01} \\ c_{10} & c_{11} \end{pmatrix}$ with only 4 unknowns. It turns out **[2]** the solution space of these 8 constraints is the line $\ell = vC$. Using a little bit of linear algebra, according to Q10, any point on that line can be used to decrypt.

[1] "In C^ode: a mathematical journey" by Sarah Flannery with David Flannery.Algonquin books of Chapel Hill. 2002.

[2] "A Brief Retrospective Look at the Cayley-Purser Public-key Cryptosystem, 19 Years Later", by Douglas R. Stinson. Cryptology ePrint Archive, Report 2018/270, 2018. https://ia.cr/2018/270.

	Question 2. Perfect Encryptions	(10 + 10 + 10 = 30 points)			
	Let q and p = 2q+1 both be primes. Let g be a generator of QR _p . Let (p,q,g) be publicly known parameters in relation to some private-key encryption system. For each of the following private-key encryption algorithm give me				
	 the decryption algorithm corresponding to the encryption, 				
	 a (non-trivial) key-space K, and a (non-trivial) message-space M such that the given encryption scheme is perfectly secret, for all k∈K m∈M. 				
[10%]	(i) Enc _k (m) := m+k mod p				
[10%]	(ii) Enc _k (m) := m•k mod p				
[10%]	(iii)Enc _k (m) := k ^m mod p				