

# **DECEMBER 2023 FINAL EXAMINATION**

Cryptography and Data Security

#### COMP 547, section 001

18 December 2023, 14:00

| EXAMINER:   | Claude Crépeau | ASSOC.<br>EXAMINER: | Giuli | ia Al | lberi | ini |  |  |
|-------------|----------------|---------------------|-------|-------|-------|-----|--|--|
| STUDENT NAM | IE:            | McGILL ID:          |       |       |       |     |  |  |
|             |                |                     |       |       |       |     |  |  |

|                                                 | CLOSED BOOK □                                                                                                                                                                                                                                                                                                                                                                                                | OPEN BOOK                           | $\boxtimes$ |      |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|------|--|--|--|--|
|                                                 | SINGLE-SIDED □                                                                                                                                                                                                                                                                                                                                                                                               | PRINTED ON BOTH SIDES OF THE PAGE ⊠ |             |      |  |  |  |  |
| EXAM:                                           | MULTIPLE CHOICE ANSWER SHEETS: YES  NO  NOTE: The Examination Security Monitor Program detects pairs of students with unusually similar answer patterns on multiple-choice exams. Data generated by this program can be used as admissible evidence, either to initiate or corroborate an investigation or a charge of cheating under Section 16 of the Code of Student Conduct and Disciplinary Procedures. |                                     |             |      |  |  |  |  |
|                                                 | ANSWER BOOKLET REQUIRED:                                                                                                                                                                                                                                                                                                                                                                                     |                                     | YES ⊠       | NO □ |  |  |  |  |
|                                                 | EXTRA BOOKLETS PERMIT                                                                                                                                                                                                                                                                                                                                                                                        | ΓΤΕD:                               | YES ⊠       | NO □ |  |  |  |  |
|                                                 | ANSWER ON EXAM:                                                                                                                                                                                                                                                                                                                                                                                              |                                     | YES □       | NO ⊠ |  |  |  |  |
|                                                 | STUDENT 🗆                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |             |      |  |  |  |  |
| CRIB SHEETS:                                    | PERMITTED ⊠ Specifications: no limit  NOT PERMITTED □                                                                                                                                                                                                                                                                                                                                                        |                                     |             |      |  |  |  |  |
| DICTIONARIES:                                   | TRANSLATION ONLY ☑ REGULAR □ NOT PERMITTED □                                                                                                                                                                                                                                                                                                                                                                 |                                     |             |      |  |  |  |  |
| CALCULATORS:                                    | NOT PERMITTED ⊠  PERMITTED (Non-Programmable) □ PERMITTED (Programmable) □                                                                                                                                                                                                                                                                                                                                   |                                     |             |      |  |  |  |  |
| ANY SPECIAL INSTRUCTIONS: e.g. molecular models | <ul> <li>This examination is worth 40% of your final grade.</li> <li>The exam consists of 10 questions on 3 pages (title page included).</li> </ul>                                                                                                                                                                                                                                                          |                                     |             |      |  |  |  |  |

Course: COMP-547 Page number: 1 of 3

# Suggestion: read all the questions and their values before you start answering.

#### Part I.

[10%]

What is the effect (on the decrypted plaintext) of a single bit flip in the ciphertext when using the CBC, OFB, and CTR modes of operation?

[10%]

Exhibit a function family  $f_k: \{0,...,7\} \rightarrow \{0,1\}$  which is strongly universal.

[10%]

We know it is possible to have **MAC**s that are secure without computational assumptions. Why not signatures?

[10%]

In class (book Section 13.4.1) we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query. **HINT**: one of the two queries in the previous attack can be simulated using the public-key instead of the oracle.

[10%]

### Part 2. CPA security

You are given two encryption schemes  $\Pi_1$  and  $\Pi_2$ . You know that at least one of them is CPA-secure. Build an encryption scheme from these two that is guaranteed CPA-secure.

[10%]

## Part 3. Existential Unforgeability

You are given two MAC schemes  $\Pi_1$  and  $\Pi_2$ . You know that at least one of them is existentially unforgeable under adaptive chosen-message attack. Build a digital signature scheme from these two that is guaranteed to be existentially unforgeable under adaptive chosen-message attack.

Course: COMP-547 Page number: 2 of 3

#### **Part 4. Perfect Encryptions**

Let q and p = 2q + 1 both be primes. Let g be a generator of  $QR_p$ .

Let (p, q, g) be publicly known parameters in relation to some private-key encryption system. For each of the following private-key encryption algorithm give me

- the decryption algorithm corresponding to the encryption,
- a (non-trivial) key-space K, and a (non-trivial) message-space M such that the given encryption scheme is perfectly secret, for all  $k \in K$ ,  $m \in M$ .

("non-trivial" = "contains at least 2 elements")

[10%]

 $(i) \quad \operatorname{Enc}_k(m) := m + k \mod p$ 

[10%]

(ii)  $\operatorname{Enc}_k(m) := m \cdot k \mod p$ 

[10%]

[10%]

**(iii)**  $\operatorname{Enc}_k(m) := m^k \mod p$ 

#### Part 5. OHNISHI

In 1988 a japanese master student called Ohnishi realized and proved that a Feistel network of 3 rounds using 2 (instead of 3) pseudo-random functions is enough to obtain a pseudo-random permutation. I give an example below using DES with 2 independent keys k<sub>1</sub> and k<sub>2</sub>.

My question is rather open-ended : <u>compare</u> this DES variation to triple-DES with two or three keys as we learned it in class. Be as exhaustive as possible about as many aspects as possible.



FIGURE 6.5: A three-round Feistel network.

Course: COMP-547