COMP-330
 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Part II : Lec. 10-23

Definition of CFG

－Variables
A，B，C，〈TERM），〈EXPR〉
－Alphabet（of terminals） $0,1, \#$
－Substitution Rules $\begin{aligned} & A \rightarrow \text { OA1 } \\ & \text {（EXPR }\rangle \rightarrow\langle T E R M\rangle\end{aligned}$
－Start Variable A
（left－hand side of the first substitution rule）

Definition of CFG

DEFINITION 2.2

A context-free grammar is a 4-tuple (V, Σ, R, S), where

1. V is a finite set called the variables,
2. Σ is a finite set, disjoint from V, called the terminals,
3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals, and
4. $S \in V$ is the start variable.

Parse Tree

Figure 2.1
Parse tree for $000 \# 111$ in grammar G_{1}

Definition of CFL

- If u, v and w are strings of variables and terminals, and $A \rightarrow W$ is a rule of the grammar, we say that uAv yields uwv, written $u A v \Rightarrow u w v$.
(2 We say that u derives $v(u \stackrel{*}{v} v)$ if $u=v$ or if

$$
u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \ldots \Rightarrow u_{k} \Rightarrow v, k \geq 0
$$

(2) The language of G is $\left\{w \in \Sigma^{*} \mid S \stackrel{*}{=} w\right\}$.

Context-Free Grammars

- Formally, grammar G_{1} :

$$
\begin{aligned}
V= & \{A, B\} \\
\Sigma & =\{0,1, \#\} \\
R= & \{A \rightarrow O A 1 \mid B, \\
& B \rightarrow \#\} \\
S= & A
\end{aligned}
$$

- $L\left(G_{1}\right)=\left\{0^{n \# 1 n} \mid n \geq 0\right\}$.

Regular Operations: Kleene's theorem (CFG)

Regular Operations : Kleene's theorem (CFL)

THEOREM
The class of CFLS is closed under the union operation.

- Let $G_{A}=\left(V_{A}, \Sigma, R_{A}, S_{A}\right)$ be a $C F G$ generating L_{A} and $G_{B}=\left(V_{B}, \Sigma_{,}, R_{B}, S_{B}\right)$ be a $C F G$ generating $L_{B}\left(V_{A} \cap V_{B}=\varnothing\right)$.
- Consider
$G_{U}=\left(\{S U\} U V_{A} U V_{B,}\right.$
Σ,
$\left\{S_{u} \rightarrow S_{A} \mid S_{B}\right\} \cup R_{A} \cup R_{B}$, Su).
- $L_{u}=L_{A} U L_{B}$.

Regular Operations : Kleene's theorem (CFL)

(2 Let $G_{A}=\left(V_{A}, \Sigma, R_{A}, S_{A}\right)$ be a CFG generating L_{A} and $G_{B}=\left(V_{B}, \Sigma^{2}, R_{B}, S_{B}\right)$ be a CFG generating $L_{B}\left(V_{A} \cap V_{B}=\varnothing\right)$.

- Consider $G_{c}=($
$\left\{S_{C}\right\} \cup V_{A} \cup V_{B}$,
Σ,
$\left\{S_{C} \rightarrow S_{A} S_{B}\right\} \cup R_{A} \cup R_{B}$,
$\left.S_{c}\right)$.
(2) $L_{C}=L_{A} L_{B}$.

Regular Operations : Kleene's theorem (CFL)

THEOREM

The class of CFLS is closed under the star operation.

- Let $G_{A}=\left(V_{A}, \sum_{,} R_{A}, S_{A}\right)$ be a CFG generating L_{A}.
- Consider $G_{s}=($
$\left\{S_{s}\right\} \cup V_{A}$,
Σ,
$\left\{S_{s} \rightarrow \varepsilon \mid S_{A} S_{S}\right\} U_{A_{A}}$ Ss).
- $L_{s}=\left(L_{A}\right)^{*}$.

Construction tools (and Reductions)

CFLs are closed under union, concatenation and star. If there exists a CFL C s. t. either $A^{*}=A^{\prime}$, $A \cup C=A^{\prime}, A \circ C=A^{\prime}$
(but neither complement nor intersection) or any combinations of these operations then A^{\prime} is a CFL as long as A is.
(If A^{\prime} is NON-CFL then so is A.)

***Construction ***

${ }^{\text {A }} 2.18$ a. Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context free.
2.18 (a) Let C be a context-free language and R be a regular language. Let P be the PDA that recognizes C, and D be the DFA that recognizes R. If Q is the set of states of P and Q^{\prime} is the set of states of D, we construct a PDA P^{\prime} that recognizes $C \cap R$ with the set of states $Q \times Q^{\prime} . P^{\prime}$ will do what P does and also keep track of the states of D. It accepts a string w if and only if it stops at a state $q \in F_{P} \times F_{D}$, where F_{P} is the set of accept states of P and F_{D} is the set of accept states of D. Since $C \cap R$ is recognized by P^{\prime}, it is context free.

Construction tools

- Constructing a CFG for a regular language L : $M=\left(Q=\left\{q_{0}, q_{1}, \ldots, q_{k}\right\}, \Sigma, \delta, q_{0}, F\right)$ is converted to $G=\left(V=\left\{R_{0}, R_{1}, \ldots, R_{k}\right\}, \Sigma, R, S=R_{0}\right)$ where
- R contains rule $R_{i} \rightarrow a R_{j}$ for each $\delta\left(q_{i}, a\right)=q_{j}$ in M, and rule $R_{i} \rightarrow \boldsymbol{\varepsilon}$ for each accept-state $\mathrm{q}_{\mathrm{i}} \in \mathrm{F}$.
- R_{0} is the start variable.

- $M_{3,2}=\left(Q=\left\{q 0, q_{1}, q_{2}\right\},\{0,1\}, \delta, q 0, F\right)$ is converted to $G_{3,2}=\left(V=\left\{R_{0}, R_{1}, R_{2}\right\},\{0,1\}, R, S=R_{0}\right)$ where
- R: $\mathrm{R}_{0} \rightarrow \mathrm{OR}_{0}\left|1 \mathrm{R}_{1}\right| \varepsilon$
$\mathrm{R}_{1} \rightarrow O \mathrm{R}_{2} \mid 1 \mathrm{R}_{0}$
$R_{2} \rightarrow O R_{1} \mid 1 R_{2}$

extra EXAMPLE of CFG

EXAMPLE 2.4

Consider grammar $G_{4}=(V, \Sigma, R,\langle\mathrm{EXPR}\rangle)$.
V is $\{\langle\mathrm{EXPR}\rangle,\langle$ TERM \rangle,\langle FACTOR $\rangle\}$ and Σ is $\{\mathrm{a},+, \mathrm{x},()$,$\} . The rules are$

$$
\begin{aligned}
\langle\text { EXPR }\rangle & \rightarrow\langle\text { EXPR }\rangle+\langle\text { TERM }\rangle \mid\langle\text { TERM }\rangle \\
\langle\text { TERM }\rangle & \rightarrow\langle\text { TERM }\rangle \times\langle\text { FACTOR }\rangle \mid\langle\text { FACTOR }\rangle \\
\langle\text { FACTOR }\rangle & \rightarrow(\langle\text { EXPR }\rangle) \mid \text { a }
\end{aligned}
$$

extra EXAMPLE of CFG

FIGURE 2.5

Parse trees for the strings $a+a \times a$ and $(a+a) \times a$

Ambiguity in CFGs

Ambiguity

- A string w is derived ambiguously by a CFG G if it has two or more distinct leftmost derivations. Grammar G is ambigious if it generates some string ambiguously.

Ambiguous version of example 2.4

G_{5}

$$
\langle E X P R\rangle \rightarrow\langle E X P R\rangle+\langle E X P R\rangle|\langle E X P R\rangle \times\langle E X P R\rangle|(\langle E X P R\rangle) \mid a
$$

FIGURE 2.6
The two parse trees for the string a+axa in grammar G_{5}

Ambiguity

- Ambiguity is not desirable in CFG because it may lead to unexpected interpretations of a string, for instance in the context of arithmetic expressions or programming languages.
- However, some languages are inherently ambiguous, meaning that all grammars generating this language must be ambiguous.
- example : \{aibick | i=j or j=k\}

Chomsky Normal Form

DEFINITION 2.8

A context-free grammar is in Chomsky normal form if every rule is of the form

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal and A, B, and C are any variables-except that B and C may not be the start variable. In addition we permit the rule $S \rightarrow \varepsilon$, where S is the start variable.

Chomsky Normal Form

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky normal form.
2.26 Show that, if G is a CFG in Chomsky normal form, then for any string $w \in L(G)$ of length $n \geq 1$, exactly $2 n-1$ steps are required for any derivation of w.

$$
A_{\text {CFG }}=\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\} .
$$

THEOREM 4.7

$A_{\text {CFG }}$ is a decidable language.

PROOF IDEA For CFG G and string w we want to determine whether G generates w. One idea is to use G to go through all derivations to determine whether any is a derivation of w. This idea doesn't work, as infinitely many derivations may have to be tried. If G does not generate w, this algorithm would never halt. This idea gives a Turing machine that is a recognizer, but not a decider, for $A_{\text {CFG }}$.

To make this Turing machine into a decider we need to ensure that the algorithm tries only finitely many derivations. In Problem 2.26 (page 157) we showed that, if G were in Chomsky normal form, any derivation of w has $2 n-1$ steps, where n is the length of w. In that case checking only derivations with $2 n-1$ steps to determine whether G generates w would be sufficient. Only finitely many such derivations exist. We can convert G to Chomsky normal form by using the procedure given in Section 2.1.

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky normal form.

- Proof:
- First, we add a new start variable So and the rule $S_{0} \rightarrow$ S, where S was the original start variable.

Chomsky Normal Form

EXAMPLE 2.10

Let G_{6} be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given. The series of grammars presented illustrates the steps in the conversion. Rules shown in bold have just been added. Rules shown in gray have just been removed

1. The original CFG G_{6} is shown on the left. The result of applying the first step to make a new start variable appears on the right.

$$
\begin{aligned}
& S \rightarrow A S A \mid \mathrm{a} B \\
& A \rightarrow B \mid S \\
& B \rightarrow \mathrm{~b} \mid \varepsilon
\end{aligned}
$$

$$
S_{0} \rightarrow S
$$

$$
S \rightarrow A S A \mid \mathrm{a} B
$$

$$
A \rightarrow B \mid S
$$

$$
B \rightarrow \mathrm{~b} \mid \varepsilon
$$

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky normal form.

- Second, we take care of all ε-rules. We remove an ε-rule " $A \rightarrow \varepsilon$ ", where A is not the start variable.
- Then for each occurrence of A on the righthand side of a rule we add a new rule with that occurrence deleted.
- Accordingly, each rule " $R \rightarrow A$ " is replaced by " $\mathrm{R} \rightarrow \boldsymbol{\varepsilon}$ " unless it has been already removed.

Chomsky Normal Form

$$
\begin{aligned}
\mathbf{S}_{\mathbf{0}} & \rightarrow \boldsymbol{S} \\
S & \rightarrow A S A \mid \mathrm{a} B \\
A & \rightarrow B \mid S \\
B & \rightarrow \mathrm{~b} \mid \varepsilon
\end{aligned}
$$

2. Remove ε-rules $B \rightarrow \varepsilon$, shown on the left, and $A \rightarrow \varepsilon$, shown on the right.

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A \mid \mathrm{a} B \| \mathbf{a} \\
A & \rightarrow B \mid S \| \boldsymbol{\varepsilon} \\
B & \rightarrow \mathrm{~b} \| \varepsilon
\end{aligned}
$$

$$
S_{0} \rightarrow S
$$

$$
S \rightarrow A S A|\mathrm{a} B| \mathrm{a} \| \boldsymbol{S} \boldsymbol{A}|\boldsymbol{A} \boldsymbol{S}| \boldsymbol{S}
$$

$$
A \rightarrow B \mid S \| \varepsilon
$$

$$
B \rightarrow \mathrm{~b}
$$

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky normal form.

- Third, we handle all unit rules by removing each unit rule $A \rightarrow B$.
- In consequence whenever $B \rightarrow u$ appears, we add the rule $A \rightarrow u$ unless this is a unit rule previously removed.

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow A S A|\mathrm{a} B| \mathrm{a}|\boldsymbol{S A}| \boldsymbol{A S} \mid \boldsymbol{S} \\
& A \rightarrow B \mid S \\
& B \rightarrow \mathrm{~b}
\end{aligned}
$$

3a. Remove unit rules $S \rightarrow S$, shown on the left, and $S_{0} \rightarrow S$, shown on the right.

$$
\left.\begin{array}{ll}
S_{0} \rightarrow S & S_{0} \rightarrow S \mid A \boldsymbol{A S A | a \boldsymbol { a } | \mathrm { a } | \boldsymbol { S } \boldsymbol { A } | \boldsymbol { A S }} \\
S \rightarrow A S A|\mathrm{a} B| \mathrm{a}|S A| A S \| S & S
\end{array}\right) A S A|\mathrm{a} B| \mathrm{a}|S A| A S
$$

3b. Remove unit rules $A \rightarrow B$ and $A \rightarrow S$.

$$
\begin{array}{rl}
S_{0} \rightarrow A S A|\mathrm{a} B| \mathrm{a}|S A| A S & S_{0} \rightarrow A S A|\mathrm{a} B| \mathrm{a}|S A| A S \\
S & \rightarrow A S A|\mathrm{a} B| \mathrm{a}|S A| A S \\
A & S \rightarrow A S A|\mathrm{a} B| \mathrm{a}|S A| A S \\
B \rightarrow B\|S\| \mathrm{b} & \\
B & A \rightarrow S \\
& B \rightarrow \mathrm{~b}
\end{array}
$$

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky normal form.

- Finally, we convert all remaining rules as follows: $A \rightarrow u_{1} u_{2} \ldots u_{k}$ for $k>2$, where each u_{i} is a variable or terminal with a series of rules $A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, \ldots, A_{k-2} \rightarrow u_{k-1} u_{k}$ where each A_{i} is a new variable.
- When $k=2$, and $A \rightarrow u_{1} u_{2}$, we may replace any terminal u_{i} by a variable U_{i} and the rule $\mathrm{U}_{\mathrm{i}} \rightarrow \mathrm{u}_{\mathrm{i}}$.

```
S0}->ASA|\textrm{a}B|\textrm{a}|SA|A
    S->ASA| а B| а | SA|AS
A->\textrm{b}|\boldsymbol{ASA|}\boldsymbol{A}\boldsymbol{B}|\mathbf{a}|\boldsymbol{SA|AS}
B->\textrm{b} \(B \rightarrow \mathrm{~b}\)
```

4. Convert the remaining rules into the proper form by adding additional variables and rules. The final grammar in Chomsky normal form is equivalent to G_{6}. (Actually the procedure given in Theorem 2.9 produces several variables U_{i} and several rules $U_{i} \rightarrow$ a. We simplified the resulting grammar by using a single variable U and rule $U \rightarrow$ a.)

$$
\begin{aligned}
S_{0} & \rightarrow A A_{1} \\
S & \left.\rightarrow\left|\frac{U B}{A A_{1}}\right||\mathrm{a}| S A \right\rvert\, A S \\
A & \rightarrow \mathrm{~b}\left|\left|A A_{1}\right|\right| U B|S A| A S \\
A_{1} & \rightarrow S A \\
\hline U & \rightarrow \mathrm{a}|S A| A S \\
B & \rightarrow \mathrm{~b}
\end{aligned}
$$

Normal Form

Chomsky

Chomsky

Normal Form

$$
\begin{aligned}
& S \rightarrow A S A \mid \mathrm{a} B \\
& A \rightarrow B \mid S \\
& B \rightarrow \mathrm{~b} \mid \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
S_{0} & \rightarrow A A_{1}|U B| \mathrm{a}|S A| A S \\
S & \rightarrow A A_{1}|U B| \mathrm{a}|S A| A S \\
A & \rightarrow \mathrm{~b}\left|A A_{1}\right| U B|\mathrm{a}| S A \mid A S \\
A_{1} & \rightarrow S A \\
U & \rightarrow \mathrm{a} \\
B & \rightarrow \mathrm{~b}
\end{aligned}
$$

Definition of PDA

- States

q_{1}

q_{2} q3

- Alphabets input: a, b, c, d STACK: A,B,C,D
- Transition function
- Start state

- Accept states

Definition of PDA

Definition of PDA

DEFINITION 2.13

A pusbdown automaton is a 6 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, where Q, Σ, Γ, and F are all finite sets, and

1. Q is the set of states,
2. Σ is the input alphabet,
3. Γ is the stack alphabet,
4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$ is the transition function,
5. $q_{0} \in Q$ is the start state, and
6. $F \subseteq Q$ is the set of accept states.

Definition of PDA

- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ be a pushdown automaton and let $w=w_{1} w_{2} \ldots w_{n}(n \geq 0)$ be a string where each symbol $w_{i} \in \Sigma$.
- M accepts w if $\exists m \geq n, \exists r_{0}, r_{1}, \ldots, r_{m} \in Q, \exists s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$ and $\exists y_{1} y_{2} \ldots y_{m}=w$, with $y_{i} \in \Sigma_{\varepsilon}$ s.t.

1. $\mathrm{r}_{0}=\mathrm{q}_{0}, \mathrm{~s}_{0}=\boldsymbol{\varepsilon}$
2. $r_{i+1}, b \in \delta\left(r_{i}, y_{i+1}, a\right) \quad$ for $i=0$...m-1, $s_{i}=a t, s_{i+1}=b \dagger$
3. $r_{m} \in F$ for some $\dagger \in \Gamma^{*}, a, b \in \Gamma_{\varepsilon}$

EXAMPLE 2.14

The following is the formal description of the PDA (next slide) that recognizes the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. Let M_{1} be ($\left.Q, \Sigma, \Gamma, \delta, q_{1}, F\right)$, where

$$
\begin{aligned}
& Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}, \\
& \Sigma=\{0,1\}, \\
& \Gamma=\{0, \$\}, \\
& F=\left\{q_{1}, q_{4}\right\}, \text { and }
\end{aligned}
$$

δ is given by the following table, wherein blank entries signify \emptyset.

Examples of PDA

Figure 2.15
State diagram for the PDA M_{1} that recognizes $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Examples of PDA

figure 2.17

State diagram for PDA M_{2} that recognizes

$$
\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Examples of PDA

Figure 2.19
State diagram for the PDA M_{3} that recognizes $\left\{w w^{\mathcal{R}} \mid w \in\{0,1\}^{*}\right\}$

PDA vs CFG

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

LEMMA 2.21

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

CFG to PDA

LEMMA 2.21

If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.

1. Place the marker symbol $\$$ and the start variable on the stack.
2. Repeat the following steps forever.
a. If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and substitute A by the string on the right-hand side of the rule.
b. If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a. If they match, repeat. If they do not match, reject on this branch of the nondeterminism.
c. If the top of stack is the symbol \$, enter the accept state. Doing so accepts the input if it has all been read.

CFG to PDA

- Proof: Given a CFG $G=(V, I, R, S)$, we now construct a PDA $P=(Q, \Sigma, \Gamma, \delta, q 0, F)$ for it.
- We define a special notation to write an entire string on the stack in one step.
- We can simulate this action by adding extra states to write the string one symbol at a time.

CFG to PDA

- Let q and r be states of the PDA and let $a \in \Sigma_{\varepsilon} s \in \Gamma_{\varepsilon}$.
- Starting in state q, say we want to read a from the input and pop s from the stack. Moreover we want to push string $\mathrm{u}=\mathrm{u}_{1} . . \mathrm{u}_{\ell}$ back onto the stack at the same time and end in state r.

CFG to PDA

(2) We implement this action $\left(a, s \rightarrow u_{1} \ldots u_{\ell}\right)$ by introducing new states q_{1}, \ldots, q_{l-1} and setting the transition function as follows:
$\delta(q, a, s) \ni\left(q_{1}, u_{\ell}\right)$,
$\delta\left(q_{1}, \varepsilon, \varepsilon\right)=\left\{\left(q_{2}, u_{\ell-1}\right)\right\}$,
$\delta\left(q_{2}, \varepsilon, \varepsilon\right)=\left\{\left(q_{3}, u_{l-2}\right)\right\}$,
$\delta\left(q_{\ell-1}, \varepsilon, \varepsilon\right)=\left\{\left(r, u_{1}\right)\right\}$.

CFG to PDA

FIGURE 2.24
State diagram of P
The states of P are $Q=\left\{q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}\right\} \cup E$, where E is the set of states we need for implementing the shorthand just described. The start state is $q_{\text {start }}$. The only accept state is $q_{\text {accept }}$.

The transition function is defined as follows. We begin by initializing the stack to contain the symbols $\$$ and S, implementing step 1 in the informal description: $\delta\left(q_{\text {start }}, \varepsilon, \varepsilon\right)=\left\{\left(q_{\text {loop }}, S \$\right)\right\}$. Then we put in transitions for the main loop of step 2.

CFG to PDA

First, we handle case (a) wherein the top of the stack contains a variable. Let $\delta\left(q_{\text {loop }}, \boldsymbol{\varepsilon}, A\right)=\left\{\left(q_{\text {loop }}, w\right) \mid\right.$ where $A \rightarrow w$ is a rule in $\left.R\right\}$.

Second, we handle case (b) wherein the top of the stack contains a terminal. Let $\delta\left(q_{\text {loop }}, a, a\right)=\left\{\left(q_{\text {loop }}, \varepsilon\right)\right\}$.

Finally, we handle case (c) wherein the empty stack marker $\$$ is on the top of the stack. Let $\delta\left(q_{\text {loop }}, \varepsilon, \$\right)=\left\{\left(q_{\text {accept }}, \varepsilon\right)\right\}$.

CFG to PDA

EXAMPLE 2.25

We use the procedure developed in Lemma 2.21 to construct a PDA P_{1} from the following CFG G.

$$
\begin{aligned}
& S \rightarrow \mathrm{a} T \mathrm{~b} \mid \mathrm{b} \\
& T \rightarrow T \mathrm{a} \mid \varepsilon
\end{aligned}
$$

PDA to CFG

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

PDA to CFG

First, we simplify our task by modifying P slightly to give it the following three features.

1. It has a single accept state, $q_{\text {accept }}$.
2. It empties its stack before accepting.
3. Each transition either pushes a symbol onto the stack (a push move) or pops one off the stack (a pop move), but it does not do both at the same time.

- Giving P features 1 and 2 is easy.
- To give it feature 3, we replace each transition that simultaneously pops and pushes with a two-transition sequence that goes through a new state, each transition that neither pops nor pushes with a two-transition sequence that pushes then pops an arbitrary stack symbol.

PDA to CFG

PROOF Say that $P=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ and construct G. The variables of G are $\left\{A_{p q} \mid p, q \in Q\right\}$. The start variable is $A_{q_{0}, q_{\text {accepp }}}$. Now we describe G 's rules.

- For each $p, q, r, s \in Q, t \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, if $\delta(p, a, \varepsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ε), put the rule $A_{p q} \rightarrow a A_{r s} b$ in G.
- For each $p, q, r \in Q$, put the rule $A_{p q} \rightarrow A_{p r} A_{r q}$ in G.
- Finally, for each $p \in Q$, put the rule $A_{p p} \rightarrow \varepsilon$ in G.

You may gain some insight for this construction from the following figures.

- For each $p, q, r \in Q$, put the rule $A_{p q} \rightarrow A_{p r} A_{r q}$ in G.

FIGURE 2.28
PDA computation corresponding to the rule $A_{p q} \rightarrow A_{p r} A_{r q}$

- For each $p, q, r, s \in Q, t \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, if $\delta(p, a, \varepsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ε), put the rule $A_{p q} \rightarrow a A_{r s} b$ in G.

FIGURE 2.29

PDA computation corresponding to the rule $A_{p q} \rightarrow a A_{r s} b$

PDA to CFG

PROOF Say that $P=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ and construct G. The variables of G are $\left\{A_{p q} \mid p, q \in Q\right\}$. The start variable is $A_{q_{0}, q_{\text {accepp }}}$. Now we describe G 's rules.

- For each $p, q, r, s \in Q, t \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, if $\delta(p, a, \boldsymbol{\varepsilon})$ contains (r, t) and $\delta(s, b, t)$ contains (q, ε), put the rule $A_{p q} \rightarrow a A_{r s} b$ in G.
- For each $p, q, r \in Q$, put the rule $A_{p q} \rightarrow A_{p r} A_{r q}$ in G.
- Finally, for each $p \in Q$, put the rule $A_{p p} \rightarrow \varepsilon$ in G.

PDA to CFG

CLAIM 2.30

If $A_{p q}$ generates x, then x can bring P from a state p (with an empty stack) to a state q (with an empty stack).

We prove this claim by induction on the number of steps in the derivation of x from $A_{p q}$.

If $A_{p q}$ generates x, then x can bring P from a state p (with an empty stack) to a state q (with an empty stack).

Basis: The derivation has 1 step.

A derivation with a single step must use a rule whose right-hand side contains no variables. The only rules in G where no variables occur on the right-hand side are $A_{p p} \rightarrow \varepsilon$. Clearly, input ε takes P from p with empty stack to p with empty stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where $k \geq 1$, and prove true for derivations of length $k+1$.

Suppose that $A_{p q} \stackrel{*}{\Rightarrow} x$ with $k+1$ steps. The first step in this derivation is either $A_{p q} \Rightarrow a A_{r s} b$ or $A_{p q} \Rightarrow A_{p r} A_{r q}$. We handle these two cases separately.

If $A_{p q}$ generates x, then x can bring P from a state p (with an empty stack) to a state q (with an empty stack).

$$
A_{p q} \Rightarrow a A_{r s} b
$$

In the first case, consider the portion y of x that $A_{r s}$ generates, so $x=a y b$. Because $A_{r s} \stackrel{*}{\Rightarrow} y$ with k steps, the induction hypothesis tells us that P can go from r on empty stack to s on empty stack. Because $A_{p q} \rightarrow a A_{r s} b$ is a rule of $G, \delta(p, a, \varepsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ε), for some stack symbol t. Hence, if P starts at p with an empty stack, after reading a it can go to state r and push t onto the stack. Then reading string y can bring it to s and leave t on the stack. Then after reading b it can go to state q and pop t off the stack. Therefore x can bring it from p with empty stack to q with empty stack.

If $A_{p q}$ generates x, then x can bring P from a state p (with an empty stack) to a state q (with an empty stack).

$A_{p q} \Rightarrow A_{p r} A_{r q}$

In the second case, consider the portions y and z of x that $A_{p r}$ and $A_{r q}$ respectively generate, so $x=y z$. Because $A_{p r} \stackrel{*}{\Rightarrow} y$ in at most k steps and $A_{r q} \stackrel{*}{\Rightarrow} z$ in at most k steps, the induction hypothesis tells us that y can bring P from p to r, and z can bring P from r to q, with empty stacks at the beginning and end. Hence x can bring it from p with empty stack to q with empty stack. This completes the induction step.

PDA to CFG

CLAIM 2.31

If x can bring P from a state p (with an empty stack) to a state q (with an empty stack), then $A_{p q}$ generates x.

We prove this claim by induction on the number of steps in the computation of P that goes from p to q with empty stacks on input x.

If x can bring P from a state p (with an empty stack) to a state q (with an empty stack), then $A_{p q}$ generates x.

Basis: The computation has 0 steps.

If a computation has 0 steps, it starts and ends at the same state-say, p. So we must show that $A_{p p} \stackrel{*}{\Rightarrow} x$. In 0 steps, P only has time to read the empty string, so $x=\varepsilon$. By construction, G has the rule $A_{p p} \rightarrow \varepsilon$, so the basis is proved.

Induction step: Assume true for computations of length at most k, where $k \geq 0$, and prove true for computations of length $k+1$.

Suppose that P has a computation wherein x brings p to q with empty stacks in $k+1$ steps. Either the stack is empty only at the beginning and end of this computation, or it becomes empty elsewhere, too.

If x can bring P from a state p (with an empty stack) to a state q (with an empty stack), then $A_{p q}$ generates x.
the stack is empty only at the beginning and end
In the first case, the symbol that is pushed at the first move must be the same as the symbol that is popped at the last move. Call this symbol t. Let a be the input read in the first move, b be the input read in the last move, r be the state after the first move, and s be the state before the last move. Then $\delta(p, a, \varepsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ε), and so rule $A_{p q} \rightarrow a A_{r s} b$ is in G.

Let y be the portion of x without a and b, so $x=a y b$. Input y can bring

- For each $p, q, r, s \in Q, t \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, if $\delta(p, a, \varepsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ε), put the rule $A_{p q} \rightarrow a A_{r s} b$ in G.
x so the computation on y nas $(k+1)-2=k-1$ steps. Inus tne induction hypothesis tells us that $A_{r s} \stackrel{*}{\Rightarrow} y$. Hence $A_{p q} \stackrel{*}{\Rightarrow} x$.

If x can bring P from a state p (with an empty stack) to a state q (with an empty stack), then $A_{p q}$ generates x.

it becomes empty elsewhere, too.

In the second case, let r be a state where the stack becomes empty other than at the beginning or end of the computation on x. Then the portions of the computation from p to r and from r to q each contain at most k steps. Say that y is the input read during the first portion and z is the input read during the second portion. The induction hypothesis tells us that $A_{p r} \stackrel{*}{\Rightarrow} y$ and $A_{r q} \stackrel{*}{\Rightarrow} z$. Because rule $A_{p q} \rightarrow A_{p r} A_{r q}$ is in $G, A_{p q} \stackrel{*}{\Rightarrow} x$, and the proof is complete.

PDA vs CFG

LEMMA 2.21

If a language is context free, then some pushdown automaton recognizes it.

LEMMA $\mathbf{2 . 2 7}$
If a pushdown automaton recognizes some language, then it is context free.

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

Pumping Lemma for CFLs

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s=u v x y z$ satisfying the conditions

1. for each $i \geq 0, u v^{i} x y^{i} z \in A$,
2. $|v y|>0$, and
3. $|v x y| \leq p$.

Pumping Lemma for CFLs

Yehoshua Bar-Hillel

Micha A. Perles

Eli Shamir

FIGURE 2.35

Surgery on parse trees

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s=u v x y z$ satisfying the conditions

1. for each $i \geq 0, u v^{i} x y^{i} z \in A$,
2. $|v y|>0$, and
3. $|v x y| \leq p$.
$\mathrm{A} \in \mathbb{C} F \mathrm{~L} L \Longrightarrow$
$\exists p \forall s \in A,|s| \geq p, \exists u v x y z=s$ st $1,2,3=$ true.
$\forall p \exists s \in A,|s| \geq p, \forall u v x y z=s$ st $2,3=$ true [1=false].
$\Longrightarrow A \notin \mathbb{C} F^{L}$
$\forall p \exists s \in A,|s| \geq p, \quad \forall u v x y z=s$ s.t. $|v y|>0,|v x y| \leq p$,
then $\exists i \geq 0$ s. $. ~ s . s=u v^{i} x y^{i} z \notin A$.
$\Longrightarrow A \notin \mathbb{C F L}$

Reductions

(\& Construction tools)

CFLs are closed under union, concatenation and star. If there exists a CFL C s. t. either $A^{*}=A^{\prime}$, $A \cup C=A^{\prime}, A \circ C=A^{\prime}$
(but neither complement nor intersection) or any combinations of these operations then A^{\prime} is a CFL as long as A is.
(If A^{\prime} is NON-CFL then so is A.)

*** Reduction example ***

${ }^{\text {A }} 2.18$ a. Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context free.
2.18 (a) Let C be a context-free language and R be a regular language. Let P be the PDA that recognizes C, and D be the DFA that recognizes R. If Q is the set of states of P and Q^{\prime} is the set of states of D, we construct a PDA P^{\prime} that recognizes $C \cap R$ with the set of states $Q \times Q^{\prime} . P^{\prime}$ will do what P does and also keep track of the states of D. It accepts a string w if and only if it stops at a state $q \in F_{P} \times F_{D}$, where F_{P} is the set of accept states of P and F_{D} is the set of accept states of D. Since $C \cap R$ is recognized by P^{\prime}, it is context free.

Computability Theory

NON-Regular Languages
via Pumping Lemma

NON-Regular
Languages
via Reductions

Computability Theory

NON-CFLS
via Pumping Lemma

Computability Theory

via Diagonalization via Reductions

Turing MACHINES

Alan Turing

Definition of TM

- States

- Input Alphabet a, b, c
- Tape Alphabet a, b, c, A, B, C,
- Transition function
- Start state
- Accept state Gacc
- Reject state
qrej

Definition of TM

TM definition

DEFINITION 3.3

A Turing machine is a 7-tuple, $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where Q, Σ, Γ are all finite sets and

1. Q is the set of states,
2. Σ is the input alphabet not containing the blank symbol \sqcup,
3. Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ is the transition function,
5. $q_{0} \in Q$ is the start state,
6. $q_{\text {accept }} \in Q$ is the accept state, and
7. $q_{\text {reject }} \in Q$ is the reject state, where $q_{\text {reject }} \neq q_{\text {accept }}$.

FIGURE 3.10

State diagram for Turing machine M_{1}

TM Configuration

As a Turing machine computes, changes occur in the current state, the current tape contents, and the current head location. A setting of these three items is called a configuration of the Turing machine. Configurations often are represented in a special way. For a state q and two strings u and v over the tape alphabet Γ we write $u q v$ for the configuration where the current state is q, the current tape contents is $u v$, and the current head location is the first symbol of v. The tape contains only blanks following the last symbol of v. For example, $1011 q_{7} 01111$ represents the configuration when the tape is 101101111 , the current state is q_{7}, and the head is currently on the second 0 . The following figure depicts a Turing machine with that configuration.

TM Computation

FIGURE 3.4
A Turing machine with configuration $1011 q_{7} 01111$

TM definition

- For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \Gamma, \mathrm{u}, \mathrm{v} \in \Gamma^{*}, \mathrm{q}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}} \in \mathrm{Q}$
- Config. uaqibv yields config. uqujacv if $\delta\left(q_{i}, b\right)=q_{i}, \mathrm{c}, \mathrm{L}$
- Config. uaqibv yields config. uac $\mathrm{q}_{\mathrm{j}} \mathrm{V}$ if $\delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{b}\right)=\mathrm{q}_{\mathrm{j}, \mathrm{c}, \mathrm{R}}$
- Special cases: Config. $\mathrm{q}_{\mathrm{i}} \mathrm{bv}$ yields $\mathrm{q}_{\mathrm{i} \boldsymbol{c} \mathrm{c} v}$ if $\delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{b}\right)=\mathrm{q}_{\mathrm{i}}, \mathrm{c}, \mathrm{L}$ Config. $\mathrm{q}_{\mathrm{i}} \mathrm{bv}$ yields $\mathrm{c} \mathbf{q}_{\mathrm{j}} \mathrm{v}$ if $\delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{b}\right)=\mathrm{q}_{\mathrm{i}, \mathrm{c}, \mathrm{R}}$

TM definition

TM definition

TM definition

TM definition

TM Computation

- Start configuration: $q_{0} w \quad$ ($w=$ input string $)$
- Accepting configuration: state $=$ qaccept
- Rejecting configuration: state $=$ qreject

TM Computation

- Turing Machine M accepts input w if there exists configurations $\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{m}}$ such that
- C_{0} is a start configuration
- C_{i} yields $\mathrm{C}_{\mathrm{i}+1} \quad$ for $0 \leq i<m$
- C_{m} is an accepting configuration.
- The collection of strings that M accepts is the language of M or the language recognized by M , denoted $\mathrm{L}(\mathrm{M})$.

TM Computation

DEFINITION 3.5

Call a language Turing-recognizable if some Turing machine recognizes it. ${ }^{1}$

- A TM decides a language if it recognizes it and halts (reaches an accepting or rejecting states) on all input strings.

DEFINITION 3.6

Call a language Turing-decidable or simply decidable if some Turing machine decides it. ${ }^{2}$
${ }^{1}$ Often named Recursively-Enumerable in the literature. ${ }^{2}$ Offen named Recursive in the literature.

TM Examples

EXAMPLE 3.7

Here we describe a Turing machine (TM) M_{2} that decides $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$, the language consisting of all strings of 0 s whose length is a power of 2 .
$M_{2}=$ "On input string w :

1. Sweep left to right across the tape, crossing off every other 0 .
2. If in stage 1 the tape contained a single 0 , accept.
3. If in stage 1 the tape contained more than a single 0 and the number of 0 s was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go to stage 1."

TM Examples

Now we give the formal description of $M_{2}=\left(Q, \Sigma, \Gamma, \delta, q_{1}, q_{\text {accept }}, q_{\text {reject }}\right)$:

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{\text {accept }}, q_{\text {reject }}\right\}$,
- $\Sigma=\{0\}$, and
- $\Gamma=\{0, \mathrm{x}\lrcorner$,$\} .$
- We describe δ with a state diagram (see Figure 3.8).
- The start, accept, and reject states are $q_{1}, q_{\mathrm{accept}}$, and q_{reject}.

FIGURE 3.8
State diagram for Turing machine M_{2}

TM Examples

EXAMPLE 3.11

Here, a TM M_{3} is doing some elementary arithmetic. It decides the language $C=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k} \mid i \times j=k\right.$ and $\left.i, j, k \geq 1\right\}$.
$M_{3}=$ "On input string w :

1. Scan the input from left to right to determine whether it is a member of $\mathrm{a}^{+} \mathrm{b}^{+} \mathrm{c}^{+}$and reject if it isn't.
2. Return the head to the left-hand end of the tape.
3. Cross off an a and scan to the right until a b occurs. Shuttle between the b's and the c's, crossing off one of each until all b's are gone. If all c's have been crossed off and some b's remain, reject.
4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's have been crossed off, determine whether all c's also have been crossed off. If yes, accept; otherwise, reject."

TM Examples

$M_{4}=$ "On input w :

1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that symbol was a \#, continue with the next stage. Otherwise, reject.
2. Scan right to the next \# and place a second mark on top of it. If no \# is encountered before a blank symbol, only x_{1} was present, so accept.
3. By zig-zagging, compare the two strings to the right of the marked \#s. If they are equal, reject.
4. Move the rightmost of the two marks to the next \# symbol to the right. If no \# symbol is encountered before a blank symbol, move the leftmost mark to the next \# to its right and the rightmost mark to the \# after that. This time, if no \# is available for the rightmost mark, all the strings have been compared, so accept.
5. Go to Stage 3."

More Turing MACHINES

- Multitape Turing Machines
- Non-Deterministic Turing Machines
- Enumerator Turing Machines
- Everything else...

Multitape TM

FIGURE 3.14
Representing three tapes with one

Multitape TM

$$
\delta: Q \times \Gamma^{k} \longrightarrow Q \times \Gamma^{k} \times\{\mathrm{L}, \mathrm{R}, \mathrm{~S}\}^{k}
$$

where k is the number of tapes. The expression

$$
\delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, \mathrm{~L}, \mathrm{R}, \ldots, \mathrm{~L}\right)
$$

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

Multitape TM

$S=$ "On input $w=w_{1} \cdots w_{n}$:

1. First S puts its tape into the format that represents all k tapes of M. The formatted tape contains

$$
\# \dot{w}_{1} w_{2} \cdots w_{n} \#\llcorner \# \stackrel{\bullet}{\bullet} \# \cdots
$$

2. To simulate a single move, S scans its tape from the first \#, which marks the left-hand end, to the $(k+1)$ st \#, which marks the right-hand end, in order to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way that M 's transition function dictates.
3. If at any point S moves one of the virtual heads to the right onto a \#, this action signifies that M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost \#, one unit to the right. Then it continues the simulation as before."

Multitape TM

COROLLARY 3.15

A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.

PROOF A Turing-recognizable language is recognized by an ordinary (singletape) Turing machine, which is a special case of a multitape Turing machine. That proves one direction of this corollary. The other direction follows from Theorem 3.13.

Non-deterministic TM

The transition function for a nondeterministic Turing machine has the form

$$
\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})
$$

THEOREM 3.16

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Non-deterministic TM

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Non-deterministic TM

1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2 .
3. Use tape 2 to simulate N with input w on one branch of its nondeterministic computation. Before each step of N consult the next symbol on tape 3 to determine which choice to make among those allowed by N 's transition function. If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4_{0} Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.
4. Replace the string on tape 3 with the lexicographically next string. Simulate the next branch of N 's computation by going to stage 2 .

Enumerator TM

FIGURE 3.20

Schematic of an enumerator

Enumerator TM

THEOREM 3.21

A language is 'Turing-recognizable if and only if some enumerator enumerates it.

Enumerator TM

PROOF First we show that if we have an enumerator E that enumerates a language A, a TM M recognizes A. The TM M works in the following way.
$M=$ "On input w :

1. Run E. Every time that E outputs a string, compare it with w.
2. If w ever appears in the output of E, accept."

Clearly, M accepts those strings that appear on E 's list.

Enumerator TM

Now we do the other direction. If TM M recognizes a language A, we can construct the following enumerator E for A. Say that $s_{1}, s_{2}, s_{3}, \ldots$ is a list of all possible strings in Σ^{*}.
$E=$ "Ignore the input.

1. Repeat the following for $i=1,2,3, \ldots$
2. Run M for i steps on each input, $s_{1}, s_{2}, \ldots, s_{i}$.
3. If any computations accept, print out the corresponding s_{j}."

If M accepts a particular string s, eventually it will appear on the list generated by E. In fact, it will appear on the list infinitely many times because M runs from the beginning on each string for each repetition of step 1. This procedure gives the effect of running M in parallel on all possible input strings.

Everything Else

- Lambda-calculus
- Recursive Functions
- Programming languages:
- FORTRAN, PASCAL, C, JAVA,...
- LISP, SCHEME,...

Church-Turing Thesis

Alonzo Church

Alan Turing

Church-Turing Thesis

Intuitive notion of algorithms

Turing machine algorithms

FIGURE 3.22
'The Church-Turing Thesis

Hilbert's $10^{\text {th }}$ problem

- Let P be an integer-coefficient polynomial in several variables:

$$
P(x, y, z)=24 x^{2} y^{3}+17 x z+5 y+25
$$

- Is there a set of integers for x, y, z such that $P(x, y, z)=0$?
- This problem is undecidable... but is Turing-Recognizable...
- Needed a formal model of computing to prove impossibility.

Yuri Matiyasevich

Single variable Poly

Let

$$
D_{1}=\{p \mid p \text { is a polynomial over } x \text { with an integral root }\}
$$

Here is a TM M_{1} that recognizes D_{1} :
$M_{1}=$ "The input is a polynomial p over the variable x.

1. Evaluate p with x set successively to the values $0,1,-1,2,-2$, $3,-3, \ldots$ If at any point the polynomial evaluates to 0 , accept."
3.21 Let $c_{1} x^{n}+c_{2} x^{n-1}+\cdots+c_{n} x+c_{n+1}$ be a polynomial with a root at $x=x_{0}$. Let $c_{\text {max }}$ be the largest absolute value of a c_{i}. Show that

$$
\left|x_{0}\right|<(n+1) \frac{c_{\max }}{\left|c_{1}\right|} .
$$

Computability Theory

Decidable

UNdecidable

Turing Decidability

Alan Turing

Format \& Notations

- Represent objects as strings
- $\left\langle O_{1}, O_{2}, \ldots, O_{k}\right\rangle$ is the string representing objects $O_{1}, O_{2}, \ldots, O_{k}$
- Many encodings are possible.
- Implicitly, at beginning of an algorithm, check that input is in the correct format, otherwise reject.

Format \& Notations

EXAMPLE 3.23

Let A be the language consisting of all strings representing undirected graphs that are connected. Recall that a graph is connected if every node can be reached from every other node by traveling along the edges of the graph. We write

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\} .
$$

The following is a high-level description of a TM M that decides A.

Format \& Notations

$M=$ "On input $\langle G\rangle$, the encoding of a graph G :

1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked:
3. For each node in G, mark it if it is attached by an edge to a node that is already marked.
4. Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

Decidable Languages

Decidable	Undecidable
Adpa	EQcfg
ANFA	ATM
Arex	HALTTM
EdFa	ETM
EQdia	REGULARTM
Acfg	EQtM
Ecfo	PCP

Decidable Languages about DFA

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\} .
$$

THEOREM 4.1

$A_{\text {DFA }}$ is a decidable language.

PROOF IDEA We simply need to present a TM M that decides $A_{\text {DFA }}$.
$M=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."

Decidable Languages about DFA

We can prove a similar theorem for nondeterministic finite automata. Let

$$
A_{\mathrm{NFA}}=\{\langle B, w\rangle \mid B \text { is an NFA that accepts input string } w\} .
$$

THEOREM 4.2

$A_{\text {NFA }}$ is a decidable language.
$N=" O n$ input $\langle B, w\rangle$ where B is an NFA, and w is a string:

1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
2. Run TM M from Theorem 4.1 on input $\langle C, w\rangle$.
3. If M accepts, accept; otherwise, reject."

Decidable Languages about DFA

Similarly, we can determine whether a regular expression generates a given string. Let $A_{\text {REX }}=\{\langle R, w\rangle \mid R$ is a regular expression that generates string $w\}$.

THEOREM 4.3

$A_{\text {REX }}$ is a decidable language.
PROOF The following TM P decides $A_{\text {REX }}$.
$P=$ "On input $\langle R, w\rangle$ where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using the procedure for this conversion given in Theorem 1.54.
2. Run TM N on input $\langle A, w\rangle$.
3. If N accepts, accept; if N rejects, reject."

Decidable Languages about DFA

$$
E_{\mathrm{DFA}}=\{\langle A\rangle \mid A \text { is a DFA and } L(A)=\emptyset\} .
$$

THEOREM 4.4

$E_{\text {DFA }}$ is a decidable language.
PROOF A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible. To test this condition we can design a TM T that uses a marking algorithm similar to that used in Example 3.23.
$T=$ "On input $\langle A\rangle$ where A is a DFA:

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise, reject."

Decidable Languages about DFA

$$
E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\} .
$$

THEOREM 4.5

$E Q_{\text {DFA }}$ is a decidable language.
PROOF To prove this theorem we use Theorem 4.4. We construct a new DFA C^{\prime} from A and B, where C accepts only those strings that are accepted by either A or B but not by both. Thus, if A and B recognize the same language, C will accept nothing. The language of C is

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B)) .
$$

Once we have constructed C we can use Theorem 4.4 to test whether $L(C)$ is empty. If it is empty, $L(A)$ and $L(B)$ must be equal.
$F=$ "On input $\langle A, B\rangle$, where A and B are DFAs:

1. Construct DFA C as described.
2. Run TM T from Theorem 4.4 on input $\langle C\rangle$.
3. If T accepts, accept. If T rejects, reject."

Decidable Languages about CFG

$$
A_{\text {CFG }}=\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\} .
$$

THEOREM 4.7

$A_{\text {CFG }}$ is a decidable language.
PROOF The TM S for $A_{\text {CFG }}$ follows.
$S=$ "On input $\langle G, w\rangle$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with $2 n-1$ steps, where n is the length of w, except if $n=0$, then instead list all derivations with 1 step.
3. If any of these derivations generate w, accept; if not, reject."

Decidable Languages about CFG

$$
E_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\} .
$$

THEOREM 4.8

$E_{\text {CFG }}$ is a decidable language.

PROOF

$R=$ "On input $\langle G\rangle$, where G is a CFG:

1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G has a rule $A \rightarrow U_{1} U_{2} \cdots U_{k}$ and each symbol U_{1}, \ldots, U_{k} has already been marked.
4. If the start variable is not marked, accept; otherwise, reject."

Decidable Languages about CFG

THEOREM 4.9

Every context-free language is decidable.

PROOF Let G be a CFG for A and design a TM M_{G} that decides A. We build a copy of G into M_{G}. It works as follows.
$M_{G}=$ "On input $w:$

1. Run TM S on input $\langle G, w\rangle$
2. If this machine accepts, accept; if it rejects, reject."

Decidable Languages

Decidable	Undecidable
Adpa	EQcfg
ANFA	ATM
Arex	HALTTM
EdFa	ETM
EQdia	REGULARTM
Acfg	EQtM
Ecfo	PCP

Undecidable Languages about CFG

Next we consider the problem of determining whether two context-free grammars generate the same language. Let

$$
E Q_{\mathrm{CFG}}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\} .
$$

Undecidable Languages about TM

$A_{\text {DFA }}$ and $A_{\text {CFG }}$ were decidable, $A_{\text {TM }}$ is not. Let

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { accepts } w\} .
$$

THEOREM 4.11
$A_{\text {TM }}$ is undecidable.

$A_{\text {ТМ }}$ is Turing-recognizable.

$U=$ "On input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

Comparing Cardinalities

Comparing Cardinalities

All languages

Undecidable Language about TM

THE ACCEPTANCE PROBLEM IS UNDECIDABLE

Now we are ready to prove Theorem 4.11, the undecidability of the language

$$
A_{\text {TM }}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{T} M \text { and } M \text { accepts } w\} .
$$

Undecidable Language about TM

Assumption: H exists

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

Undecidable Language about TM

H exists $\Rightarrow D$ exists

$D=$ "On input $\langle M\rangle$, where M is a TM:
 1. Run H on input $\langle M,\langle M\rangle\rangle$.
 2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

Undecidable Language about TM

Properties of D

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle .\end{cases}
$$

CONTBADICTION

Undecidable Language about TM

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

$D=$ "On input $\langle M\rangle$, where M is a $T M$:

1. Run H on input $\langle M,\langle M\rangle\rangle$.
2. Output the opposite of what H outputs; that is, if H accepts, reject and if H rejects, accept."

Undecidable Language about TM

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$
M_{1}	accept		accept	
M_{2}	accept	accept	accept	accept
M_{3}				
M_{4}	accept	accept		

figure 4.19

Entry i, j is accept if M_{i} accepts $\left\langle M_{j}\right\rangle$

Undecidable Language about TM

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept	reject	accept	reject	
M_{2}	accept	accept	accept	accept	\ldots
M_{3}	reject	reject	reject	reject	\cdots
M_{4}	accept	accept	reject	reject	
\vdots		\vdots			

FIGURE 4.20
Entry i, j is the value of H on input $\left\langle M_{i},\left\langle M_{j}\right\rangle\right\rangle$

Undecidable Language about TM

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	$\langle D\rangle$	
M_{1}	accept	reject	accept	reject	accept	
M_{2}	accept	accept	accept	accept	accept	
M_{3}	reject	reject	$\underline{\text { reject }}$	reject	reject	
M_{4}	accept	accept	reject	$\underline{\text { reject }}$	accept	
D	reject	reject	accept	accept		

FIGURE 4.21
If D is in the table, a contradiction occurs at "?"

Diagonalization

Decidable	Undecidable
ADFA	EQcFg
ANFA	ATM
AREX	HALTTM
EDFA	ETM
EQdFa	REGUIARTM
AcFG	EQtM
EcFg	PCP

Unrecognizable

Language about TM

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Let M_{1} and M_{2} be TMs respectively recognizing L and its complement L.
$M=$ "On input w :

1. Run both M_{1} and M_{2} on input w in parallel.
2. If M_{1} accepts, accept; if M_{2} accepts, reject."

Unrecognizable

Language about TM

COROLLARY 4.23

$\overline{A_{\text {TM }}}$ is not Turing-recognizable.
PROOF We know that $A_{\text {TM }}$ is Turing-recognizable. If $\overline{A_{\text {TM }}}$ also were Turingrecognizable, $A_{\text {TM }}$ would be decidable. Theorem 4.11 tells us that $A_{\text {тм }}$ is not decidable, so $\overline{A_{\text {TM }}}$ must not be Turing-recognizable.

Computability Theory

Languages

Decidable Languages

 we canUNdecidable
via Diagonalization

UNdecidable
 via Reductions

Reducibility

Decidable	Undecidable
ADFA	EQcFg
ANFA	ATM
Arex	HALT TM
EDFA	ETM
EQdFA	REGULARTM
Acfg	EQTM
ECFG	PCP

Reducibility

Reducibility always involves two problems, which we call A and B. If A reduces to B, we can use a solution to B to solve A. So in our example, A is the problem of finding your way around the city and B is the problem of obtaining a map. Note that reducibility says nothing about solving A or B alone, but only about the solvability of A in the presence of a solution to B.

$$
H A L T_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{TM} \text { and } M \text { halts on input } w\} .
$$

$H A L T_{\mathrm{TM}}$ is undecidable.

Reducibility

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\} .
$$

THEOREM 5.2

$E_{\text {TM }}$ is undecidable.
PROOF Let's write the modified machine described in the proof idea using our standard notation. We call it M_{1}.
$M_{1}=$ "On input x :

1. If $x \neq w$, reject.
2. If $x=w$, run M on input w and accept if M does."

This machine has the string w as part of its description. It conducts the test of whether $x=w$ in the obvious way, by scanning the input and comparing it character by character with w to determine whether they are the same.

Reducibility

Putting all this together, we assume that TM R decides E_{TM} and construct TM S that decides $A_{\text {тм }}$ as follows.
$S=$ "On input $\langle M, w\rangle$, an encoding of a $T M M$ and a string w :

1. Use the description of M and w to construct the $T M M_{1}$ just described.
2. Run R on input $\left\langle M_{1}\right\rangle$.
3. If R accepts, reject; if R rejects, accept."

Note that S must actually be able to compute a description of M_{1} from a description of M and w. It is able to do so because it needs only add extra states to M that perform the $x=w$ test.

If R were a decider for $E_{\text {TM }}, S$ would be a decider for $A_{\text {TM }}$. A decider for $A_{\text {TM }}$ cannot exist, so we know that $E_{\text {TM }}$ must be undecidable.

Reducibility

$R^{2} G U L A R_{\mathrm{TM}}=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is a regular language $\}$.

THEOREM 5.3
$R E G U L A R_{\text {TM }}$ is undecidable.

Reducibility

PROOF We let R be a TM that decides $R E G U L A R_{\text {TM }}$ and construct TM S to decide $A_{\text {тм }}$. Then S works in the following manner.
$S=$ "On input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Construct the following $\mathrm{TM} M_{2}$.
$M_{2}=$ "On input x :
2. If x has the form $0^{n} 1^{n}$, accept.
3. If x does not have this form, run M on input w and accept if M accepts w."
4. Run R on input $\left\langle M_{2}\right\rangle$.
5. If R accepts, accept; if R rejects, reject."

$L\left(M_{2}\right)= \begin{cases}\left\{0^{n}|n| n \geq 0\right\} & \text { if } M \text { rejects } w \\ \Sigma^{*} & \text { if } M \text { accepts } w\end{cases}$

Reducibility

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1} \text { and } M_{2} \text { are TMs and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} .
$$

THEOREM 5.4
$E Q_{T M}$ is undecidable.

Reducibility

```
PROOF We let TM R decide }E\mp@subsup{Q}{\mathrm{ TM }}{}\mathrm{ and construct TM }S\mathrm{ to decide }\mp@subsup{E}{\mathrm{ TM }}{}\mathrm{ as follows.
\(S=\) "On input \(\langle M\rangle\), where \(M\) is a TM:
1. Run \(R\) on input \(\left\langle M, M_{1}\right\rangle\), where \(M_{1}\) is a TM that rejects all inputs.
2. If \(R\) accepts, accept; if \(R\) rejects, reject."
```

If R decides $E Q_{\mathrm{TM}}, S$ decides E_{TM}. But E_{TM} is undecidable by Theorem 5.2, so $E Q_{\mathrm{TM}}$ also must be undecidable.

Reducibility

AMBIG $_{\text {cFe }}$

Post Correspondence Problem

Post Correspondence Problem
aaa
a
bbb
aa \qquad

An instance of PCP with 6 dominos.

A solution to PCP
aa bbb b
bb bb

Post Correspondence Problem
u_{1}

$$
\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}
$$

Given n dominos, $\left[u_{1} / v_{1}\right] \ldots\left[u_{n} / v_{n}\right]$ where each u_{i} or v_{i} is a string of symbols.

- Is there an integer k and a sequence $\left\langle i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right\rangle$ (with each $1 \leq i_{j} \leq n$) s.t.
$u_{i_{1}} \circ u_{i_{2}} \circ u_{i_{3}} \circ \ldots \circ u_{i_{k}}=v_{i_{1}} \circ v_{i_{2}} \circ v_{i_{3}} \circ \ldots \circ v_{i_{k}}$?

A Solution to PCP

- A solution is of this form:

s.t.
$u_{i_{1}} \circ u_{i_{2}} \circ u_{i_{3}} \circ \ldots \circ u_{i_{k}}=v_{i_{1}} \circ v_{i_{2}} \circ v_{i_{3}} \circ \ldots \circ v_{i_{3}}$?

Post Correspondence Problem

- Theorem:

The Post Correspondence Problem cannot be decided by any algorithm (or computer program). In particular, no algorithm can identify in a finite amount of time some instances that have a No outcome. However, if a solution exists, we can find it. PCP is Turingrecognizable.

Reducing ATM to MPCP

 a (mostly) complete example

 a (mostly) complete example}

Post Correspondence Problem

- Proof Idea:

Reduction - if PCP was decidable then the ACCEPTANCE problem would be decidable as well.

Computation History

DEFINITION 5.5

Let M be a Turing machine and w an input string. An accepting computation bistory for M on w is a sequence of configurations, $C_{1}, C_{2}, \ldots, C_{l}$, where C_{1} is the start configuration of M on w, C_{l} is an accepting configuration of M, and each C_{i} legally follows from C_{i-1} according to the rules of M. A rejecting computation bistory for M on w is defined similarly, except that C_{l} is a rejecting configuration.

ATM :
 a Reduction to MPCP

A story in seven parts

Reducing MPCP to PCP

We now show how to convert P^{\prime} to P, an instance of the PCP that still simulates M on w. We do so with a somewhat technical trick. The idea is to build the requirement of starting with the first domino directly into the problem so that stating the explicit requirement becomes unnecessary. We need to introduce some notation for this purpose.

Let $u=u_{1} u_{2} \cdots u_{n}$ be any string of length n. Define $\star u, u \star$, and $\star u \star$ to be the three strings

$$
\begin{aligned}
& \star u=* u_{1} * u_{2} * u_{3} * \\
& \cdots \star= \\
& u_{1} * u_{2} * u_{3} * \cdots \\
& * u_{n} \\
& \star u \star=* u_{1} * u_{2} * u_{3} * \\
& \cdots * u_{n} *
\end{aligned}
$$

Here, $\star u$ adds the symbol $*$ before every character in $u, u \star$ adds one after each character in u, and $\star u \star$ adds one both before and after each character in u.

Reducing MPCP to PCP

To convert P^{\prime} to P, an instance of the PCP, we do the following. If P^{\prime} were the collection

$$
\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right],\left[\frac{t_{3}}{b_{3}}\right], \ldots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

we let P be the collection

$$
\left\{\left[\frac{\star t_{1}}{\star b_{1} \star}\right],\left[\frac{\star t_{1}}{b_{1} \star}\right],\left[\frac{\star t_{2}}{b_{2} \star}\right],\left[\frac{\star t_{3}}{b_{3} \star}\right], \ldots,\left[\frac{\star t_{k}}{b_{k^{\star}}}\right],\left[\frac{* \diamond}{\diamond}\right]\right\} .
$$

Reducing MPCP to PCP

Considering P as an instance of the PCP, we see that the only domino that could possibly start a match is the first one,

$$
\left[\frac{\star t_{1}}{\star b_{1} \star}\right]
$$

because it is the only one where both the top and the bottom start with the same symbol-namely, *. Besides forcing the match to start with the first domino, the presence of the $*$ s doesn't affect possible matches because they simply interleave with the original symbols. The original symbols now occur in the even positions of the match. The domino

$$
\left[\frac{* \diamond}{\diamond}\right]
$$

is there to allow the top to add the extra $*$ at the end of the match.

Reducibility

Reducibility

$$
A L L_{\mathrm{CFG}}=\left\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\Sigma^{*}\right\}
$$

THEOREM 5.13

$A L L_{\mathrm{CFG}}$ is undecidable.

EOcaf decidable \Rightarrow ALLcra decidable

$E_{\text {cFs }}=\left\{\left\langle G_{1}, G_{2}\right\rangle \mid G_{1}, G_{2}\right.$ are CFGs and $\left.L\left(G_{1}\right)=L\left(G_{2}\right)\right\}$
Let $\left\langle\mathrm{G}_{2}\right\rangle$ be such that $\mathrm{L}\left(\mathrm{G}_{2}\right)=\Sigma^{*} .\left(\mathrm{G}_{2}: \mathrm{R} \rightarrow \varepsilon|O R| I R\right)$ $\langle G\rangle \in A L L c F g \Leftrightarrow\left\langle G, G 2 \in E Q_{c F G}\right.$

ALLcrec decidable \Rightarrow ATM decidable

We now describe how to use a decision procedure for $A L L_{\text {CFG }}$ to decide $A_{\text {TM }}$. For a TM M and an input w, we construct a CFG G that generates all strings if and only if M does not accept w. So if M does accept w, G does not generate some particular string. This string is-guess what-the accepting computation history for M on w. That is, G is designed to generate all strings that are not accepting computation histories for M on w.

To make the CFG G generate all strings that fail to be an accepting computation history for M on w, we utilize the following strategy. A string may fail to be an accepting computation history for several reasons. An accepting computation history for M on w appears as $\# C_{1} \# C_{2} \# \cdots \# C_{l} \#$, where C_{i} is the configuration of M on the i th step of the computation on w. Then, G generates all strings

1. that do not start with C_{1},
2. that do not end with an accepting configuration, or
3. in which some C_{i} does not properly yield C_{i+1} under the rules of M.

If M does not accept w, no accepting computation history exists, so all strings fail in one way or another. Therefore, G would generate all strings, as desired.

PDA $D(\leftrightarrow G)$ for

M does not accept w

FIGURE 5.14
Every other configuration written in reverse order

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.
- The third branch is supposed to accept if some C_{i} does not properly yield C_{i+1} :
- It works by scanning the input until it nondeterministically decides that it has come to C_{i}.
- Next, it pushes C_{i} onto the stack until it comes to the end as marked by the \# symbol.
- Then D pops the stack to compare with C_{i+1}.
- They are supposed to match except around the head position, where the difference is dictated by the transition function of M.
- Finally, D accepts if it discovers a mismatch or an improper update.

PDA $D(\leftrightarrow G)$ for

(M) does not accept w

$$
L(D)=\left\{\begin{array}{cc}
\Sigma * \backslash\left\{\begin{array}{cc}
\substack{\text { accepting } \\
\text { computito } \\
\text { history }}
\end{array}\right\} & \text { if } M \text { accepts } w \\
\Sigma^{*} & \text { if } M \text { rejects } w
\end{array}\right.
$$

- On input $\langle M, w\rangle$ generate $\langle G\rangle$ s.t.

$$
L(G)=\Sigma^{*} \leftrightarrow M \text { rejects } w
$$

- If Allcfg is decidable, then so is Atm.

Mapping Reducibility

Computable Functions

A Turing machine computes a function by starting with the input to the function on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

EXAMPLE 5.18

All usual arithmetic operations on integers are computable functions. For example, we can make a machine that takes input $\langle m, n\rangle$ and returns $m+n$, the sum of m and n. We don't give any details here, leaving them as exercises.

Mapping Reducibility

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational problems by languages.

DEFINITION 5.20

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

The function f is called the reduction of A to B.

Mapping Reducibility

'The following figure illustrates mapping reducibility.

FIGURE 5.21

THEOREM 5.22

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.
$N=$ "On input w :

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs."

Clearly, if $w \in A$, then $f(w) \in B$ because f is a reduction from A to B. Thus M accepts $f(w)$ whenever $w \in A$. Therefore N works as desired.

COROLLARY 5.23

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

EXAMPLE 5.24

In Theorem 5.1 we used a reduction from A_{TM} to prove that $H A L T_{\mathrm{TM}}$ is undecidable. This reduction showed how a decider for $H A L T_{\mathrm{TM}}$ could be used to give a decider for $A_{\text {Тм }}$. We can demonstrate a mapping reducibility from $A_{\text {Тм }}$ to $H A L T_{\text {TM }}$ as follows. To do so we must present a computable function f that takes input of the form $\langle M, w\rangle$ and returns output of the form $\left\langle M^{\prime}, w^{\prime}\right\rangle$, where

$$
\langle M, w\rangle \in A_{\mathrm{TM}} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{\mathrm{TM}} .
$$

The following machine F computes a reduction f.
$F=$ "On input $\langle M, w\rangle$:

1. Construct the following machine M^{\prime}.
$M^{\prime}=$ "On input x :
2. Run M on x.
3. If M accepts, accept.
4. If M rejects, enter a loop."
5. Output $\left\langle M^{\prime}, w\right\rangle$."

Mapping Reducibility

EXAMPLE 5.25

The proof of the undecidability of the Post correspondence problem in Theorem 5.15 contains two mapping reductions. First, it shows that $A_{\text {TM }} \leq_{\mathrm{m}} M P C P$ and then it shows that $M P C P \leq_{\mathrm{m}} P C P$. In both cases we can easily obtain the actual reduction function and show that it is a mapping reduction. As Exercise 5.6 shows, mapping reducibility is transitive, so these two reductions together imply that $A_{\mathrm{TM}} \leq_{\mathrm{m}} P C P$.

Mapping Reducibility

THEOREM 5.28

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.
The proof is the same as that of Theorem 5.22, except that M and N are recognizers instead of deciders.

COROLLARY 5.29

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Mapping Reducibility

In a typical application of this corollary, we let A be $\overline{A_{\mathrm{TM}}}$, the complement of $A_{\text {TM }}$. We know that $\overline{A_{\text {TM }}}$ is not Turing-recognizable from Corollary 4.23. The definition of mapping reducibility implies that $A \leq_{\mathrm{m}} B$ means the same as $\bar{A} \leq_{\mathrm{m}} \bar{B}$. To prove that B isn't recognizable we may show that $A_{\mathrm{TM}} \leq_{\mathrm{m}} \bar{B}$. We can also use mapping reducibility to show that certain problems are neither Turing-recognizable nor co-Turing-recognizable, as in the following theorem.

THEOREM 5.30

$E Q_{\text {TM }}$ is neither Turing-recognizable nor co-Turing-recognizable.
PROOF First we show that $E Q_{\text {TM }}$ is not Turing-recognizable. We do so by showing that $A_{\text {TM }}$ is reducible to $\overline{E Q_{\mathrm{TM}}}$. The reducing function f works as follows.
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:

1. Construct the following two machines M_{1} and M_{2}.
$M_{1}=$ "On any input:
2. Reject."
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

Here, M_{1} accepts nothing. If M accepts w, M_{2} accepts everything, and so the two machines are not equivalent. Conversely, if M doesn't accept w, M_{2} accepts nothing, and they are equivalent. Thus f reduces $A_{T M}$ to $\overline{E Q_{T M}}$, as desired.

THEOREM 5.30

$E Q_{\text {TM }}$ is neither Turing-recognizable nor co-Turing-recognizable.
To show that $\overline{E Q_{\mathrm{TM}}}$ is not Turing-recognizable we give a reduction from $A_{\text {TM }}$ to the complement of $\overline{E Q_{\mathrm{TM}}}$-namely, $E Q_{\mathrm{TM}}$. Hence we show that $A_{\mathrm{TM}} \leq_{\mathrm{m}}$ $E Q_{\mathrm{TM}}$. The following TM G computes the reducing function g.
$G=$ "The input is $\langle M, w\rangle$ where M is a TM and w a string:

1. Construct the following two machines M_{1} and M_{2}.
$M_{1}=$ "On any input:
2. Accept."
$M_{2}=$ "On any input:
3. Run M on w.
4. If it accepts, accept."
5. Output $\left\langle M_{1}, M_{2}\right\rangle$."

The only difference between f and g is in machine M_{1}. In f, machine M_{1} always rejects, whereas in g it always accepts. In both f and g, M accepts w iff M_{2} always accepts. In g, M accepts w iff M_{1} and M_{2} are equivalent. That is why g is a reduction from $A_{\text {TM }}$ to $E Q_{\text {TM }}$.

Turing Reducibility

DEFINITION 6.18

An oracle for a language B is an external device that is capable of reporting whether any string w is a member of B. An oracle Turing machine is a modified Turing machine that has the additional capability of querying an oracle. We write M^{B} to describe an oracle Turing machine that has an oracle for language B.

Turing Reducibility

EXAMPLE 6.19

Consider an oracle for $A_{\text {TM }}$. An oracle Turing machine with an oracle for $A_{\text {TM }}$ can decide more languages than an ordinary Turing machine \qquad . Such a machine can (obviously) decide $A_{\text {TM }}$ itself, by querying the oracle about the input. It can also decide E_{TM}, the emptiness testing problem for TMs with the following procedure called $T^{A_{\text {TM }}}$.
$T^{A_{\mathrm{TM}}}=$ "On input $\langle M\rangle$, where M is a TM :

1. Construct the following TM N.
$N=$ "On any input:
2. Run M in parallel on all strings in Σ^{*}.
3. If M accepts any of these strings, accept."
4. Query the oracle to determine whether $\langle N, 0\rangle \in A_{\text {TM }}$.
5. If the oracle answers NO, accept; if YES, reject."

Turing Reducibility

DEFINITION 6.20

Language A is Turing reducible to language B, written $A \leq_{\mathrm{T}} B$, if A is decidable relative to B.

Turing Reducibility

THEOREM 6.21

If $A \leq_{\mathrm{T}} B$ and B is decidable, then A is decidable.
PROOF If B is decidable, then we may replace the oracle for B by an actual procedure that decides B. Thus we may replace the oracle Turing machine that decides A by an ordinary Turing machine that decides A.

Computability Theory

All languages

Languages

we can describe

Decidable Languages

Trackable Problems

Trackable Problems
(P)

- 2-colorability of maps.
- Primaliky besting. (but probably not factoring)
- Solving $N \times N \times N$ Rubik's cube.
- Finding a word in a dictionary.
- Sorting elements...

Trackable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.
- More formally, there exists a TM to compute solutions to the problem and there exists a polynomial Q such that the number of steps on each input x before halting is no more than $Q(|x|)$.

Trackable Problems
(P)

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

Tractable Problems
(P)

- The name P stands for Polynomial-Time computable.
- Q: Why choose this level of granularity? Why not choose linear-time for instance?
- A: because P is the same for all types of Turing machines and any reasonable model. This is not true of linear-time for instance...

Trackable Problems

THEOREM 7.8

Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time multitape Turing machine has an equivalent $O\left(t^{2}(n)\right)$ time single-tape Turing machine.

Complexily Theor Decidable
 Languages

$P=N P ?$

K-colouring of
Maps (planar graphs)

- $K=1$ only the maps with zero or one region are 1-colourable.
- $K=2$ easy to decide. Impossible as soon as 3 regions touch each other.
- $K=3$ No known efficient algorithm to decide. It is easy to verify a solution.
- K ≥ 4 all maps are 4 -colourable. (long proof) Does not imply easy to find a 4-colouring.

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given, (is in NP: guess a solution and verify il)
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to ALL problems in NP!

Examples of NPComplete Problems

- SAT: given a boolean formula, is chere an assignment of the variables making the formula evaluate to krue?
- Travelling Salesman: given a sel of cilies and distances bekween them, what is the shortest route lo visil each cily once.
- KnapSack: given items with various weights, is chere of subsel of chem of cotal weight K.

NP-Complete Problems

COMPUTERS AND INTRACTABILITY

 A Guide to the Theory of NP-CompletenessMichael R. Garey / David S. Johnson

NP-Complete Problems

Appendix: A List of NP-Complete Problems 187
A1 Graph Theory 190
A1.1 Covering and Partitioning 190
A1.2 Subgraphs and Supergraphs 194
A1.3 Vertex Ordering 199
A1.4 Iso- and Other Morphisms 202
A1.5 Miscellaneous 203
A2 Network Design 206
A2.1 Spanning Trees 206
A2.2 Cuts and Connectivity 209
A2.3 Routing Problems 211
A2.4 Flow Problems 214
A2.5 Miscellaneous 218
A3 Sets and Partitions 221
A3.1 Covering, Hitting, and Splitting 221
A3.2 Weighted Set Problems 223
A4 Storage and Retrieval 226
A4.1 Data Storage 226
A4.2 Compression and Representation 228
A4.3 Database Problems 232

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness
Michsel R. Garey / David S. Johnson

NP-Complete Problems

A5 Sequencing and Scheduling 236
A5.1 Sequencing on One Processor 236
A5.2 Multiprocessor Scheduling 238
A5.3 Shop Scheduling 241
A5.4 Miscellaneous 243
A6 Mathematical Programming 245
A7 Algebra and Number Theory 249
A7.1 Divisibility Problems 249
A7.2 Solvability of Equations 250
A7:3 Miscellaneous 252
A8 Games and Puzzles 254
A9 Logic 259
A9.1 Propositional Logic 259
A9.2 Miscellaneous 261
A10 Automata and Language Theory 265
A10.1 Automata Theory 265
A10.2 Formal Languages 267
A11 Program Optimization 272
A11.1 Code Generation 272
A11.2 Programs and Schemes 275
A12 Miscellaneous 279
A13 Open Problems 285

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness
Michsel R. Garey / David S. Johnson

100 pages 1979

Complexily Theor Decidable
 Languages

NP
$P=N P ?$

P Vs NP

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^{+}$be a function. Define the time complexity class, $\operatorname{TIME}(\boldsymbol{t}(\boldsymbol{n}))$, to be the collection of all languages that are decidable by an $O(t(n))$ time Turing machine.

DEFINITION 7.12

\mathbf{P} is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$
\mathrm{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

PVS NP

DEFINITION 7.9

Let N be a nondeterministic Turing machine that is a decider. The running time of N is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n, as shown in the following figure.

P VS NP

PVSNP

DEFINITION 7.21

$\operatorname{NTIME}(t(n))=\{L \mid L$ is a language decided by a $O(t(n))$ time nondeterministic Turing machine $\}$.

COROLLARY $\mathbf{7 . 2 2}$

$\mathrm{NP}=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right)$.

PVSNP

THEOREM 7.11

Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time nondeterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic singletape Turing machine.

PVS NP

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge. A \boldsymbol{k}-clique is a clique that contains k nodes. Figure 7.23 illustrates a graph having a 5 -clique

FIGURE 7.23

A graph with a 5-clique

PVSNP

The clique problem is to determine whether a graph contains a clique of a specified size. Let

$$
\text { CLIQUE }=\{\langle G, k\rangle \mid G \text { is an undirected graph with a } k \text {-clique }\} .
$$

COMPLETENESS

$\mathrm{x} \in \mathrm{L}$

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,\left[\begin{array}{c}\mathbf{\omega} \\ (x, w) \text { accepts }] \\ \hline\end{array}\right.$

SOUNDNESS

X $\notin \mathrm{L}$

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,[\bar{\sim}(x, w)$ accepts $]$

 and $\forall x \notin L, \forall w,[\overline{\mathbf{U}}(x, w)$ rejects]

CLIQUE is in NP.

PROOF IDEA The clique is the certificate.
PROOF The following is a verifier V for CLIQUE.
$V=$ "On input $\langle\langle G, k\rangle, c\rangle$:

1. Test whether c is a set of k nodes in G
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF If you prefer to think of NP in terms of nondeterministic polynomial time Turing machines, you may prove this theorem by giving one that decides CLIQUE. Observe the similarity between the two proofs.
$N=$ "On input $\langle G, k\rangle$, where G is a graph:

1. Nondeterministically select a subset c of k nodes of G.
2. Test whether G contains all edges connecting nodes in c.
3. If yes, accept; otherwise, reject."

A Boolean formula is an expression involving Boolean variables and operations. For example,

$$
\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})
$$

is a Boolean formula. A Boolean formula is satisfiable if some assignment of 0s and 1 s to the variables makes the formula evaluate to 1 . The preceding formula is satisfiable because the assignment $x=0, y=1$, and $z=0$ makes ϕ evaluate to 1 . We say the assignment satisfies ϕ. The satisfiability problem is to test whether a Boolean formula is satisfiable. Let

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\} .
$$

Now we state the Cook-Levin theorem, which links the complexity of the $S A T$ problem to the complexities of all problems in NP.

THEOREM 7.27
Cook-Levin theorem $\quad S A T \in \mathrm{P}$ iff $\mathrm{P}=\mathrm{NP}$.

Poly-kime Reducibiliky

DEFINITION 7.28

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a polynomial time computable function if some polynomial time Turing machine M exists that halts with just $f(w)$ on its tape, when started on any input w.

Poly-time educibiliky

DEFINITION 7.29

Language A is polynomial time mapping reducible, ${ }^{1}$ or simply polynomial time reducible, to language B, written $A \leq_{\mathrm{P}} B$, if a polynomial time computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ exists, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B .
$$

The function f is called the polynomial time reduction of A to B.

Poly-time Reducibility

FIGURE 7.30
Polynomial time function f reducing A to B

Poly-time Reducibility

THEOREM 7.31

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

PROOF Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B. We describe a polynomial time algorithm N deciding A as follows.
$N=$ "On input $w:$

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs."

We have $w \in A$ whenever $f(w) \in B$ because f is a reduction from A to B. Thus M accepts $f(w)$ whenever $w \in A$. Moreover, N runs in polynomial time because each of its two stages runs in polynomial time. Note that stage 2 runs in polynomial time because the composition of two polynomials is a polynomial.

NP-compleceness

DEFINITION 7.34

A language B is $N P$-complete if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 7.35

If B is NP-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.
PROOF This theorem follows directly from the definition of polynomial time reducibility.

NP-compleceness

THEOREM 7.36

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.
PROOF We already know that C is in NP, so we must show that every A in NP is polynomial time reducible to C. Because B is NP-complete, every language in NP is polynomial time reducible to B, and B in turn is polynomial time reducible to C. Polynomial time reductions compose; that is, if A is polynomial time reducible to B and B is polynomial time reducible to C, then A is polynomial time reducible to C. Hence every language in NP is polynomial time reducible to C.

Cook-Levin Theorem

THEOREM 7.37

$S A T$ is NP-complete. ${ }^{2}$
This theorem restates Theorem 7.27, the Cook-Levin theorem, in another form.

Cook-Levin Theorem

PROOF First, we show that $S A T$ is in NP. A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ.

Next, we take any language ${ }^{*} A$ in NP and show that A is polynomial time reducible to $S A T$. Let N be a nondeterministic Turing machine that decides A in n^{k} time for some constant k. (For convenience we actually assume that N runs in time $n^{k}-3$, but only those readers interested in details should worry about this minor point.) The following notion helps to describe the reduction.

[^0]A tableau for N on w is an $n^{k} \times n^{k}$ table whose rows are the configurations of a branch of the computation of N on input w, as shown in the following figure.

FIGURE 7.38

A tableau is an $n^{k} \times n^{k}$ table of configurations

Cook-Levin

 TheoremEvery accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exists.

Now we get to the description of the polynomial time reduction f from A to $S A T$. On input w, the reduction produces a formula ϕ.

turning variable $x_{i, j, s}$ on corresponds to placing symbol s in cell $[i, j]$. The first thing we must guarantee in order to obtain a correspondence between an assignment and a tableau is that the assignment turns on exactly one variable for each cell. Formula $\phi_{\text {cell }}$ ensures this requirement by expressing it in terms of Boolean operations:

$$
\phi_{\mathrm{cell}}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in C \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right] .
$$

$C=Q \cup \Gamma \cup\{\#\}$,

Cook-Levin

Theorem: $\phi_{\text {cell }}$

The symbols \wedge and \bigvee stand for iterated anD and or. For example, the expression in the preceding formula

$$
\bigvee_{s \in C} x_{i, j, s}
$$

is shorthand for

$$
x_{i, j, s_{1}} \vee x_{i, j, s_{2}} \vee \cdots \vee x_{i, j, s_{l}}
$$

where $C=\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}$. Hence $\phi_{\text {cell }}$ is actually a large expression that contains a fragment for each cell in the tableau because i and j range from 1 to n^{k}.

Cook－Levin

Theorem：$\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configu－ ration of N on w by explicitly stipulating that the corresponding variables are on：

$$
\begin{aligned}
& \phi_{\text {start }}=x_{1,1 \llbracket} \cap x_{1,2} \llbracket q_{0} \wedge \\
& x_{1,3, \omega_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3} \text { 回 } \wedge \ldots \wedge x_{1, n^{k}-1 \text { 包 }} \wedge x_{1, n^{k} \text { 进. }} \text {. }
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {accept }}$

Formula $\phi_{\text {accept }}$ guarantees that an accepting configuration occurs in the tableau. It ensures that $q_{\text {accept }}$, the symbol for the accept state, appears in one of the cells of the tableau, by stipulating that one of the corresponding variables is on:

$$
\phi_{\text {accept }}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}}
$$

Cook-Levin

Theorem: qmove

(a) | a | q_{1} | b |
| :---: | :---: | :---: |
| q_{2} | a | c |

(b) | a | q_{1} | b |
| :--- | :--- | :--- |
| a | a | q_{2} |

(c) | a | a | q_{1} |
| :--- | :--- | :--- |
| a | a | b |

(d) | $\#$ | b | a |
| :--- | :--- | :--- |
| $\#$ | b | a |

(e) | a | b | a |
| :--- | :--- | :--- |
| a | b | q_{2} |

(f) | b | b | b |
| :--- | :--- | :--- |
| c | b | b |

FIGURE 7.39
Examples of legal windows

Cook-Levin

Theorem: \$move

(a) | a | b | a |
| :--- | :--- | :--- |
| a | a | a |

Figure 7.40

(b) | a | q_{1} | b |
| :---: | :---: | :---: |
| q_{1} | a | a |

(c) | b | q_{1} | b |
| :---: | :---: | :---: |
| q_{2} | b | q_{2} |

$$
\boldsymbol{\delta}\left(q_{1}, b\right)=\left(q_{1}, c, L\right)
$$

Examples of illegal windows

Cook-Levin

Theorem: smove

CLAIM 7.41

If the top row of the table is the start configuration and every window in the table is legal, each row of the table is a configuration that legally follows the preceding one.

Cook-Levin

Theorem: smove

Now we return to the construction of $\phi_{\text {move }}$. It stipulates that all the windows in the tableau are legal. Each window contains six cells, which may be set in a fixed number of ways to yield a legal window. Formula $\phi_{\text {move }}$ says that the settings of those six cells must be one of these ways, or

$$
\phi_{\text {move }}=\bigwedge_{1<i \leq n^{k}, 1<j<n^{k}}(\text { the }(i, j) \text { window is legal })
$$

Cook-Levin

Theorem: smove

We replace the text "the (i, j) window is legal" in this formula with the following formula. We write the contents of six cells of a window as a_{1}, \ldots, a_{6}.

$$
\bigvee_{\substack{a_{1}, \ldots, a_{6} \\ \text { is a legal window }}}\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)
$$

Cook-Levin

 TheoremNow we get to the description of the polynomial time reduction f from A to $S A T$. On input w, the reduction produces a formula ϕ.

$\langle\phi\rangle \in S A T$
 iff

N accepls w
wikhin n^{k} sleps.

NP-Complele Problems

3SAT is

NP-Complete

literal is a Boolean variable or a negated Boolean variable, as in x or \bar{x}. A clause is several literals connected with $\vee \mathrm{s}$, as in ($x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}$). A Boolean formula is in conjunctive normal form, called a cnf-formula, if it comprises several clauses connected with $\wedge \mathrm{s}$, as in

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}}\right)
$$

It is a 3cnf-formula if all the clauses have three literals, as in

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}} \vee x_{4}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right)
$$

Let $3 S A T=\{\langle\phi\rangle \mid \phi$ is a satisfiable 3 cnf -formula $\}$. In a satisfiable enf-formula, each clause must contain at least one literal that is assigned 1.

NP-Complele

COROLLARY 7.42

$3 S A T$ is NP-complete.
PROOF Obviously $3 S A T$ is in NP, so we only need to prove that all languages in NP reduce to $3 S A T$ in polynomial time. One way to do so is by showing that $S A T$ polynomial time reduces to $3 S A T$. Instead, we modify the proof of Theorem 7.37 so that it directly produces a formula in conjunctive normal form with three literals per clause.

Cook-Levin Theorem

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

$$
\phi_{\mathrm{accept}}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}}
$$

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

$$
\left.\left.\phi_{\text {cell }} \phi_{\text {move }}=\bigwedge_{1<i \leq n^{k}, 1<j<n^{k}}(\text { the }(i, j) \text { window is legal })()\right)\right] .
$$

Cook-Levin Theorem

$$
\phi_{\text {move }}=\bigwedge_{1<i \leq n^{k}, 1<j<n^{k}}(\text { the }(i, j) \text { window is legal })
$$

$\bigvee\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)$ is a legal window

3SAT is

NP-Complete

Recall that $\phi_{\text {move }}$ is a big AND of subformulas, each of which is an OR of ANDs that describes all possible legal windows. The distributive laws, as described in Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of ORs. Doing so may significantly increase the size of each subformula, but it can only increase the total size of $\phi_{\text {move }}$ by a constant factor because the size of each subformula depends only on N. The result is a formula that is in conjunctive normal form.

NP-Complete

Now that we have written the formula in cnf, we convert it to one with three literals per clause. In each clause that currently has one or two literals, we replicate one of the literals until the total number is three. In each clause that has more than three literals, we split it into several clauses and add additional variables to preserve the satisfiability or nonsatisfiability of the original.

NP-Complete

Abstract

For example, we replace clause ($a_{1} \vee a_{2} \vee a_{3} \vee a_{4}$), wherein each a_{i} is a literal, with the two-clause expression $\left(a_{1} \vee a_{2} \vee z\right) \wedge\left(\bar{z} \vee a_{3} \vee a_{4}\right)$, wherein z is a new variable. If some setting of the a_{i} 's satisfies the original clause, we can find some setting of z so that the two new clauses are satisfied. In general, if the clause contains l literals,

$$
\left(a_{1} \vee a_{2} \vee \cdots \vee a_{l}\right),
$$

we can replace it with the $l-2$ clauses

$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee a_{3} \vee z_{2}\right) \wedge\left(\overline{z_{2}} \vee a_{4} \vee z_{3}\right) \wedge \cdots \wedge\left(\overline{z_{l-3}} \vee a_{l-1} \vee a_{l}\right)
$$

We may easily verify that the new formula is satisfiable iff the original formula was, so the proof is complete.

CLIQUE is

NP-Complete

THEOREM 7.32

$3 S A T$ is polynomial time reducible to CLIQUE.

PROOF IDEA The polynomial time reduction f that we demonstrate from $3 S A T$ to CLIQUE converts formulas to graphs. In the constructed graphs, cliques of a specified size correspond to satisfying assignments of the formula. Structures within the graph are designed to mimic the behavior of the variables and clauses.

CLIQUE is

NP-Complete

PROOF Let ϕ be a formula with k clauses such as

$$
\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \cdots \wedge\left(a_{k} \vee b_{k} \vee c_{k}\right)
$$

The reduction f generates the string $\langle G, k\rangle$, where G is an undirected graph defined as follows.

The nodes in G are organized into k groups of three nodes each called the triples, t_{1}, \ldots, t_{k}. Each triple corresponds to one of the clauses in ϕ, and each node in a triple corresponds to a literal in the associated clause. Label each node of G with its corresponding literal in ϕ.

The edges of G connect all but two types of pairs of nodes in G. No edge is present between nodes in the same triple and no edge is present between two nodes with contradictory labels, as in x_{2} and $\overline{x_{2}}$. The following figure illustrates this construction when $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$.

CLIQUE is
 NP-Complete

FIGURE 7.33

'The graph that the reduction produces from
$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

CLIQUE E NP-Complete: $\langle\nmid\rangle$ ESSAT $\rightarrow\langle(G, k)$ CCLIQUE

Abstract

Suppose that ϕ has a satisfying assignment. In that satisfying assignment, at least one literal is true in every clause. In each triple of G, we select one node corresponding to a true literal in the satisfying assignment. If more than one literal is true in a particular clause, we choose one of the true literals arbitrarily. The nodes just selected form a k-clique. The number of nodes selected is k, because we chose one for each of the k triples. Each pair of selected nodes is joined by an edge because no pair fits one of the exceptions described previously. They could not be from the same triple because we selected only one node per triple. They could not have contradictory labels because the associated literals were both true in the satisfying assignment. Therefore G contains a k-clique.

CLIQUE \in NP-Complete: $(6, \mathrm{~K})$ ECLIQUE $\rightarrow>(\phi)$ ESSAT

Suppose that G has a k-clique. No two of the clique's nodes occur in the same triple because nodes in the same triple aren't connected by edges. Therefore each of the k triples contains exactly one of the k clique nodes. We assign truth values to the variables of ϕ so that each literal labeling a clique node is made true. Doing so is always possible because two nodes labeled in a contradictory way are not connected by an edge and hence both can't be in the clique. This assignment to the variables satisfies ϕ because each triple contains a clique node and hence each clause contains a literal that is assigned TRUE. Therefore ϕ is satisfiable.

Vertex-Cover is NP-Complete

THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size:

$$
\begin{gathered}
\text { VERTEX-COVER }=\{\langle G, k\rangle \mid G \text { is an undirected graph that } \\
\text { has a } k \text {-node vertex cover }\} .
\end{gathered}
$$

THEOREM 7.44

VERTEX-COVER is NP-complete.

Vertex-Cover is NP-Complele

PROOF Here are the details of a reduction from 3SAT to VERTEX-COVER that operates in polynomial time. The reduction maps a Boolean formula ϕ to a graph G and a value k. For each variable x in ϕ, we produce an edge connecting two nodes. We label the two nodes in this gadget x and \bar{x}. Setting x to be TRUE corresponds to selecting the left node for the vertex cover, whereas FALSE corresponds to the right node.

Vertex-Cover is NP-Complete

The gadgets for the clauses are a bit more complex. Each clause gadget is a triple of three nodes that are labeled with the three literals of the clause. These three nodes are connected to each other and to the nodes in the variables gadgets that have the identical labels. Thus the total number of nodes that appear in G is $2 m+3 l$, where ϕ has m variables and l clauses. Let k be $m+2 l$.

For example, if $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$, the reduction produces $\langle G, k\rangle$ from ϕ, where $k=8$ and G takes the form shown in the following figure.

FIGURE 7.45

The graph that the reduction produces from
$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

Vertex-Cover \in NP-Complete: $\langle\phi\rangle \in$ SSAT $\rightarrow\langle\in, k\rangle \in V-C$

To prove that this reduction works, we need to show that ϕ is satisfiable if and only if G has a vertex cover with k nodes. We start with a satisfying assignment. We first put the nodes of the variable gadgets that correspond to the true literals in the assignment into the vertex cover. Then, we select one true literal in every clause and put the remaining two nodes from every clause gadget into the vertex cover. Now, we have a total of k nodes. They cover all edges because every variable gadget edge is clearly covered, all three edges within every clause gadget are covered, and all edges between variable and clause gadgets are covered. Hence G has a vertex cover with k nodes.

Vertex-Cover $\in N P$-Complete: $\langle C, k\rangle \in V-C \rightarrow\langle\phi\rangle \in$ SSAT

Second, if G has a vertex cover with k nodes, we show that ϕ is satisfiable by constructing the satisfying assignment. The vertex cover must contain one node in each variable gadget and two in every clause gadget in order to cover the edges of the variable gadgets and the three edges within the clause gadgets. That accounts for all the nodes, so none are left over. We take the nodes of the variable gadgets that are in the vertex cover and assign the corresponding literals TRUE. That assignment satisfies ϕ because each of the three edges connecting the variable gadgets with each clause gadget is covered and only two nodes of the clause gadget are in the vertex cover. Therefore one of the edges must be covered by a node from a variable padoet and so that assignment satisfies the corresponding claus

Beyond
 NP-Complekeness

Beyond NP-Completeness

- PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them may be solved within reasonable (Poly) amount of time, then all of them can.

Beyond NP-Completeness

DEFINITION 8.1

Let M be a deterministic Turing machine that halts on all inputs. The space complexity of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of tape cells that M scans on any input of length n. If the space complexity of M is $f(n)$, we also say that M runs in space $f(n)$.

If M is a nondeterministic Turing machine wherein all branches halt on all inputs, we define its space complexity $f(n)$ to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

Space Complexity

DEFINITION 8.2

Let $f: \mathcal{N} \longrightarrow \mathcal{R}^{+}$be a function. The space complexity classes, $\operatorname{SPACE}(f(n))$ and $\operatorname{NSPACE}(f(n))$, are defined as follows.
$\operatorname{SPACE}(f(n))=\{L \mid L$ is a language decided by an $O(f(n))$ space
deterministic Turing machine $\}.$
$\operatorname{NSPACE}(f(n))=\{L \mid L$ is a language decided by an $O(f(n))$ space nondeterministic Turing machine\}.

THEOREM 8.5

Savitch's theorem For any ${ }^{1}$ function $f: \mathcal{N} \longrightarrow \mathcal{R}^{+}$, where $f(n) \geq n$, $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$.

Space Complexicy

DEFINITION 8.6

PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

$$
\operatorname{PSPACE}=\bigcup_{k} \operatorname{SPACE}\left(n^{k}\right)
$$

We define NPSPACE, the nondeterministic counterpart to PSPACE, in terms of the NSPACE classes. However, PSPACE = NPSPACE by virtue of Savitch's theorem, because the square of any polynomial is still a polynomial.

$$
\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}=\mathrm{NPSPACE} \subseteq \operatorname{EXPTIME}=\bigcup_{\underline{k}} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Space/Time Complexily Languages
 EXPTime
 PSpace
 NP
 P
 NP = PSpace ?

Space/Time Complexily
 Decidable Languages EXPTime

 PSpace=EXPTime?

$$
\begin{aligned}
& \text { Space/Time Complexily } \\
& \text { Decidable } \\
& \text { Languages } \\
& \text { EXPTime } \\
& \text { Pspace } \\
& \text { P } \\
& \text { P } \ddagger \text { EXPTime }
\end{aligned}
$$

Space Complexily

DEFINITION 8.8

A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-bard.

Space Completeness

- Geography Game:

Given a set of country names: Aruba, Cuba, Canada, Equador, France, Italy, Japan, Korea, Nigeria, Russia, Vietnam, Yemen.

- A two player game: One player chooses a name and crosses it out. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Generalized Geography

- Given an arbitrary set of names: $\omega_{1}, \ldots, \omega_{n}$.
- Is there a winning strategy for the first player to the previous game?

Theoretical Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems. (Algorithms and Data Structures)
- PROVE that certain problems are NOT computable within a certain time or space.
- Consider new models of computation. (Such as a Quantum Computer)

Computability Theory

All languages

Languages

we can describe

Decidable Languages

Decidable

 Languagescomplete
ExPTime

PSpace
complete

Computobilify/ Complexizy

Compusobilify/ Complexity

Complexify

COMP-330
 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Part II : Lec. 10-23

[^0]: *" any language A in NP" really means:
 "any language A provably in NP".

