
COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 8 : Regular and

NON-Reg. Languages

GNFA → Reg. Expression

“equivalent” means L(CONVERT(G)) = L(G)

GNFA → Reg. Expression

Induction basis

Let G be a GNFA with exactly k=2 states.

Because of the special form of our GNFA,
the two states are the start and accept
states. The regular expression on the
transition from qstart to qaccept generates the
language accepted by this GNFA.

GNFA → Reg. Expression

Induction basis

Let G be a GNFA with exactly k=2 states.

Because of the special form of our GNFA,
the two states are the start and accept
states. The regular expression on the
transition from qstart to qaccept generates the
language accepted by this GNFA.

q2
(b∪ab*(aa)*(ab∪ba))

∪

(∅∪ab*(aa)*a*)

(ab∪(aa)*(aa)*a*)*

(b*∪(aa)*(aa)*(ab∪ba))

GNFA → Reg. Expression

Induction basis

Let G be a GNFA with exactly k=2 states.

Because of the special form of our GNFA,
the two states are the start and accept
states. The regular expression on the
transition from qstart to qaccept generates the
language accepted by this GNFA.

GNFA → Reg. Expression

GNFA → Reg. Expression
Induction step

GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one
state qrip which is neither qstart nor qaccept.

GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one
state qrip which is neither qstart nor qaccept.

qrip

q2

G

GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one
state qrip which is neither qstart nor qaccept.

Let G’ be, as in CONVERT, the GNFA
obtained after ripping qrip from G.

qrip

q2

G

GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one
state qrip which is neither qstart nor qaccept.

Let G’ be, as in CONVERT, the GNFA
obtained after ripping qrip from G.

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'

GNFA → Reg. Expression

GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G).
C o n s i d e r a n a c c e pt i n g s e q u e n c e
qstart,q1,q2,...,qaccept for string w.

GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G).
C o n s i d e r a n a c c e pt i n g s e q u e n c e
qstart,q1,q2,...,qaccept for string w.

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'

GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G).
C o n s i d e r a n a c c e pt i n g s e q u e n c e
qstart,q1,q2,...,qaccept for string w.

If qrip is not a state of the sequence, then
the very same exact sequence will accept w
in G’ because its transitions R4 contain all
those R4 in G (except for qrip) in a union with
new possibilities related to ripping qrip.

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'

GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G).
C o n s i d e r a n a c c e pt i n g s e q u e n c e
qstart,q1,q2,...,qaccept for string w.

If qrip is not a state of the sequence, then
the very same exact sequence will accept w
in G’ because its transitions R4 contain all
those R4 in G (except for qrip) in a union with
new possibilities related to ripping qrip.

GNFA → Reg. Expression

If qrip is a state of the sequence, then the
same sequence (but with all qrip removed) will
accept w in G’. That’s because any three
elements in a row qi,qrip,qj (qi≠qrip≠qj) in G’s
accepting sequence, will be processed
identically through states qi,qj in G’.
Remember that the transitions for qi,qj in G’
contain all those R1(R2)*R3 from G involving
qrip in a union with older possibilities (R4).
(we can deal with qi,qrip,...,qrip,qj similarly.)

GNFA → Reg. Expression

If qrip is a state of the sequence, then the
same sequence (but with all qrip removed) will
accept w in G’. That’s because any three
elements in a row qi,qrip,qj (qi≠qrip≠qj) in G’s
accepting sequence, will be processed
identically through states qi,qj in G’.
Remember that the transitions for qi,qj in G’
contain all those R1(R2)*R3 from G involving
qrip in a union with older possibilities (R4).
(we can deal with qi,qrip,...,qrip,qj similarly.)

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'

GNFA → Reg. Expression

If qrip is a state of the sequence, then the
same sequence (but with all qrip removed) will
accept w in G’. That’s because any three
elements in a row qi,qrip,qj (qi≠qrip≠qj) in G’s
accepting sequence, will be processed
identically through states qi,qj in G’.
Remember that the transitions for qi,qj in G’
contain all those R1(R2)*R3 from G involving
qrip in a union with older possibilities (R4).
(we can deal with qi,qrip,...,qrip,qj similarly.)

GNFA → Reg. Expression

This proved “if w∈L(G) then w∈L(G’)”. We
should also prove “if w∈L(G’) then w∈L(G)”.

Let w be a string accepted by G’, i.e.
w∈L(G’). Consider an accepting sequence
qstart,q1,q2,...,qaccept for string w. Consider any
two consecutive states qi,qi+1. The same
portion of w is processed in G in either part
of the union, R1(R2)*R3 or R4, along the
transition between qi and qi+1.

GNFA → Reg. Expression

This proved “if w∈L(G) then w∈L(G’)”. We
should also prove “if w∈L(G’) then w∈L(G)”.

Let w be a string accepted by G’, i.e.
w∈L(G’). Consider an accepting sequence
qstart,q1,q2,...,qaccept for string w. Consider any
two consecutive states qi,qi+1. The same
portion of w is processed in G in either part
of the union, R1(R2)*R3 or R4, along the
transition between qi and qi+1.

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'

GNFA → Reg. Expression

This proved “if w∈L(G) then w∈L(G’)”. We
should also prove “if w∈L(G’) then w∈L(G)”.

Let w be a string accepted by G’, i.e.
w∈L(G’). Consider an accepting sequence
qstart,q1,q2,...,qaccept for string w. Consider any
two consecutive states qi,qi+1. The same
portion of w is processed in G in either part
of the union, R1(R2)*R3 or R4, along the
transition between qi and qi+1.

GNFA → Reg. Expression

If the portion of w is generated by R4 in
G’ then it is also generated by R4 in G. If
the portion of w is generated by R1(R2)*R3
in G’ then there exists an m such that it
is generated by R1(R2)mR3 and it is also
generated in G by R1, going through qrip m
times via R2 and finally R3. Thus qi,qi+1 is
replaced by qi,qrip,...,qrip,qi+1.

We conclude that if w∈L(G’) then w∈L(G).

GNFA → Reg. Expression

If the portion of w is generated by R4 in
G’ then it is also generated by R4 in G. If
the portion of w is generated by R1(R2)*R3
in G’ then there exists an m such that it
is generated by R1(R2)mR3 and it is also
generated in G by R1, going through qrip m
times via R2 and finally R3. Thus qi,qi+1 is
replaced by qi,qrip,...,qrip,qi+1.

We conclude that if w∈L(G’) then w∈L(G).

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'

GNFA → Reg. Expression

If the portion of w is generated by R4 in
G’ then it is also generated by R4 in G. If
the portion of w is generated by R1(R2)*R3
in G’ then there exists an m such that it
is generated by R1(R2)mR3 and it is also
generated in G by R1, going through qrip m
times via R2 and finally R3. Thus qi,qi+1 is
replaced by qi,qrip,...,qrip,qi+1.

We conclude that if w∈L(G’) then w∈L(G).

Combining both statements we get L(G’)=L(G).

By induction hypothesis L(G’)=L(CONVERT(G’))
because G’ contains k-1 states. By construction,
CONVERT(G)=CONVERT(G’). Therefore  
 L(G)=L(CONVERT(G))=L(CONVERT(G’))=L(G’). 
 
 QED

GNFA → Reg. Expression

DFA → GNFA → Reg. Exp.

N+2N N+1

. . .

DFA → GNFA → Reg. Exp.

Two examples

DFA → GNFA → Reg. Exp.

DFA → GNFA → Reg. Exp.

DFA → GNFA → Reg. Exp.

DFA → GNFA → Reg. Exp.

DFA → GNFA → Reg. Exp.

DFA → GNFA → Reg. Exp.

DFA → GNFA → Reg. Exp.

q0

𝟘

𝟙

𝟚

𝟘

𝟙

𝟚 q1

q2

𝟙 𝟚

𝟘
𝟘=0U3U6U9, 𝟙=1U4U7, 𝟚=2U5U8

Multiples of 3 (base 10)

q0𝟘
𝟙

𝟚

𝟘

𝟙

𝟚
q1

q2

𝟙 𝟚

𝟘

qS

qA

𝟙

𝟛
𝟚

𝟘

𝞮
∅

∅

𝟘=0U𝟛, 𝟛=3U6U9, 𝟙=1U4U7, 𝟚=2U5U8

Multiples of 3 (base 10)

𝟘U𝟚𝟘*𝟙

q1

q2

𝟚U𝟙𝟘*𝟙

𝟘U𝟙𝟘*𝟚

qS

qA

𝟙U𝟛𝟘*𝟙

𝟚U𝟛𝟘*𝟚

𝟘U𝟛𝟘*

𝟚𝟘*

𝟙𝟘*

𝟙U𝟚𝟘*𝟚

𝟘=0U𝟛, 𝟛=3U6U9, 𝟙=1U4U7, 𝟚=2U5U8

Multiples of 3 (base 10)

𝟘U𝟙𝟘*𝟚U

(𝟚U𝟙𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*(𝟙U𝟚𝟘*𝟚)

q2

qS

qA

𝟚U𝟛𝟘*𝟚U

(𝟙U𝟛𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*(𝟙U𝟚𝟘*𝟚)

𝟘U𝟛𝟘*U

(𝟙U𝟛𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*𝟚𝟘*

𝟙𝟘*U

(𝟚U𝟙𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*𝟚𝟘*
𝟘=0U𝟛, 𝟛=3U6U9, 𝟙=1U4U7, 𝟚=2U5U8

Multiples of 3 (base 10)

qS

qA

𝟘=0U𝟛, 𝟛=3U6U9, 𝟙=1U4U7, 𝟚=2U5U8

𝟘U𝟛𝟘*U

(𝟙U𝟛𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*𝟚𝟘* U

[𝟚U𝟛𝟘*𝟚 U (𝟙U𝟛𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*(𝟙U𝟚𝟘*𝟚)]

[𝟘U𝟙𝟘*𝟚 U (𝟚U𝟙𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*(𝟙U𝟚𝟘*𝟚)]*

[𝟙𝟘* U (𝟚U𝟙𝟘*𝟙)(𝟘U𝟚𝟘*𝟙)*𝟚𝟘*]

Multiples of 3 (base 10)

𝟛 = 3U6U9,

𝟘 = 0U𝟛,

 𝟙 = 1U4U7,

𝟚 = 2U5U8

𝟘 U 𝟛𝟘* U

(𝟙U𝟛𝟘*𝟙) (𝟘U𝟚𝟘*𝟙)* 𝟚𝟘* U

[𝟚 U 𝟛𝟘*𝟚 U (𝟙U𝟛𝟘*𝟙) (𝟘U𝟚𝟘*𝟙)* (𝟙U𝟚𝟘*𝟚)]

 [𝟘 U 𝟙𝟘*𝟚 U (𝟚U𝟙𝟘*𝟙) (𝟘U𝟚𝟘*𝟙)* (𝟙U𝟚𝟘*𝟚)]*

[𝟙𝟘* U (𝟚U𝟙𝟘*𝟙) (𝟘U𝟚𝟘*𝟙)* 𝟚𝟘*]

Multiples of 3 (base 10)

Application of the

Myhill-Nerode Theorem

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R’ we can
find out whether they generate the same
regular language or not :

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R’ we can
find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’
accepting L(R) and L(R’) (Lemma 1.55).

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R’ we can
find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’
accepting L(R) and L(R’) (Lemma 1.55).

2.Compute equivalent DFAs M and M’ (Thm 1.39).

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R’ we can
find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’
accepting L(R) and L(R’) (Lemma 1.55).

2.Compute equivalent DFAs M and M’ (Thm 1.39).

3. Using part (b) of Myhill-Nerode we construct
minimal DFAs W for M and W’ for M’.

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R’ we can
find out whether they generate the same
regular language or not :

1. From R and R’, compute NFAs N and N’ 
accepting L(R) and L(R’) (Lemma 1.55).

2.Compute equivalent DFAs M and M’ (Thm 1.39).

3. Using part (b) of Myhill-Nerode we construct
minimal DFAs W for M and W’ for M’.

4. L(R)=L(R’) iff W≈W’ 
 (≈ means "identical up to state renaming").

Regular and non-Regular
Languages

footnote 3 page 46:footnote 3 page 46:

footnote 3 page 46:
Let MA=(QA,∑,δA,q0A,FA) be a DFA accepting LA
and MB=(QB,∑,δB,q0B,FB) be a DFA accepting LB.

footnote 3 page 46:

footnote 3 page 46:
Let MA=(QA,∑,δA,q0A,FA) be a DFA accepting LA
and MB=(QB,∑,δB,q0B,FB) be a DFA accepting LB.

Consider MU=(QAxQB,∑,δU,(q0A,q0B),FU) where
δU((q,q’),s) = (δA(q,s), δB(q’,s)) for all q,q’,s

and
FU = (FA × QB) ∪ (QA × FB).

footnote 3 page 46:

footnote 3 page 46:
Let MA=(QA,∑,δA,q0A,FA) be a DFA accepting LA
and MB=(QB,∑,δB,q0B,FB) be a DFA accepting LB.

Consider MU=(QAxQB,∑,δU,(q0A,q0B),FU) where
δU((q,q’),s) = (δA(q,s), δB(q’,s)) for all q,q’,s

and
FU = (FA × QB) ∪ (QA × FB).

LU = LA∪LB.

footnote 3 page 46:

footnote 3 page 46:
Let MA=(QA,∑,δA,q0A,FA) be a DFA accepting LA
and MB=(QB,∑,δB,q0B,FB) be a DFA accepting LB.

Consider MU=(QAxQB,∑,δU,(q0A,q0B),FU) where 
 δU((q,q’),s) = (δA(q,s), δB(q’,s)) for all q,q’,s
and  
 FU = (FA × QB) ∪ (QA × FB).

LU = LA∪LB.

FU = FA × FB would yield the intersection 
(and not the union) of LA and LB. 
This proves that the class of regular
languages is also closed under intersection.

footnote 3 page 46:

NON-Regular Languages

B = { 0n1n | n≥0 }

C = { w | w contains an equal number of 0’s
and 1’s }

D = { w | w contains an equal number of
occurrences of 01 and 10 as sub-strings }

NON-Regular Languages

B = { 0n1n | n≥0 }

C = { w | w contains an equal number of 0’s
and 1’s }

D = { w | w contains an equal number of
occurrences of 01 and 10 as sub-strings }

NON
-Reg

ular

NON-Regular Languages

B = { 0n1n | n≥0 }

C = { w | w contains an equal number of 0’s
and 1’s }

D = { w | w contains an equal number of
occurrences of 01 and 10 as sub-strings }

NON
-Reg

ular

NON
-Reg

ular

NON-Regular Languages

B = { 0n1n | n≥0 }

C = { w | w contains an equal number of 0’s
and 1’s }

D = { w | w contains an equal number of
occurrences of 01 and 10 as sub-strings }

NON
-Reg

ular

NON
-Reg

ular

Regu
lar

Computability
Theory
All languages

languages

we can  
describe

Regular

Languages

NON-Regular Languages

Theorem: Some languages are not regular. 
 
Proof idea: all regular languages have
certain properties. Some languages provably
do not have one of these properties.

All languages

Computability
Theory

Regular

Languages

NON-Regular Languages

via Pumping Lemma

NON-Regular

Languages

via Reductions

languages

we can  
describe

Reductions
If C is regular then so is B.

Proof: Regular languages are closed under
intersection (see footnote 3 page 46). Define
A = L(0*1*). Obviously A is regular. If C was
regular then so would C∩A = B.  
 QED

If B is NON-regular then so is C.

B = { 0n1n | n≥0 }

C = { w | w contains an equal number of 0’s and 1’s }

Reductions

If A is regular then so is A’.

Regular laguages are closed under complement
(see ex. 1.14), intersection, union, concatenation
and star. If there exists R, a regular language,
such that either AC=A’, A*=A’, A∩R=A’, A∪R=A’,
A∘R=A’ or any combinations of these
operations then A’ is regular as long as A is.

If A’ is NON-regular then so is A.

Simple Reductions

If A* is NON-regular then so is A.

If A is NON-regular then so is AC.

If A is NON-regular then so is AR.

Complex Reductions

Let A’= (A∪R)∩(AC∪R’) (R,R’ regular)

Let A’= ((AC∩R)∪(A*∩R’))∘R’’ (R,R’,R’’ regular)

Let A’= (A∘R)∩(AC∘R’) (R,R’ regular)

If A’ is NON-regular then so is A.

NON-Regular Languages

Theorem: Some languages are not regular. 
 
Proof idea: all regular languages have
certain properties. Some languages provably
do not have one of these properties.

Example: A property of all regular languages 
= the Pumping Lemma.

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 8 : Regular and

NON-Reg. Languages

