
COMP-330 
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 8 : Regular and

NON-Reg. Languages



GNFA → Reg. Expression

“equivalent” means L( CONVERT(G) ) = L(G)



GNFA → Reg. Expression

Induction basis 


Let G be a GNFA with exactly k=2 states. 


Because of the special form of our GNFA, 
the two states are the start and accept 
states. The regular expression on the 
transition from qstart to qaccept generates the 
language accepted by this GNFA.



GNFA → Reg. Expression

Induction basis 


Let G be a GNFA with exactly k=2 states. 


Because of the special form of our GNFA, 
the two states are the start and accept 
states. The regular expression on the 
transition from qstart to qaccept generates the 
language accepted by this GNFA.

q2
(b∪ab*(aa)*(ab∪ba))


∪

(∅∪ab*(aa)*a*)


(ab∪(aa)*(aa)*a*)*

(b*∪(aa)*(aa)*(ab∪ba))



GNFA → Reg. Expression

Induction basis 


Let G be a GNFA with exactly k=2 states. 


Because of the special form of our GNFA, 
the two states are the start and accept 
states. The regular expression on the 
transition from qstart to qaccept generates the 
language accepted by this GNFA.



GNFA → Reg. Expression



GNFA → Reg. Expression
Induction step



GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).



GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one
state qrip which is neither qstart nor qaccept.



GNFA → Reg. Expression
Induction step

Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage
defined by the regular expression obtained
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one
state qrip which is neither qstart nor qaccept.

qrip

q2

G



GNFA → Reg. Expression
Induction step 

Let G be a GNFA with exactly k>2 states. We 
assume for induction hypothesis that all 
GNFA G’ of k-1 states accept the laguage 
defined by the regular expression obtained 
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one 
state qrip which is neither qstart nor qaccept.

Let G’ be, as in CONVERT, the GNFA 
obtained after ripping qrip from G.

qrip

q2

G



GNFA → Reg. Expression
Induction step 

Let G be a GNFA with exactly k>2 states. We 
assume for induction hypothesis that all 
GNFA G’ of k-1 states accept the laguage 
defined by the regular expression obtained 
via CONVERT, i.e. L(G’)=L(CONVERT(G’)).

Since k>2 then there exists at least one 
state qrip which is neither qstart nor qaccept.

Let G’ be, as in CONVERT, the GNFA 
obtained after ripping qrip from G.

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'



GNFA → Reg. Expression



GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G).
C o n s i d e r a n a c c e pt i n g s e q u e n c e
qstart,q1,q2,...,qaccept for string w.



GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G).
C o n s i d e r a n a c c e pt i n g s e q u e n c e
qstart,q1,q2,...,qaccept for string w.

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'



GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G). 
C o n s i d e r a n a c c e pt i n g s e q u e n c e 
qstart,q1,q2,...,qaccept for string w. 

If qrip is not a state of the sequence, then 
the very same exact sequence will accept w 
in G’ because its transitions R4 contain all 
those R4 in G (except for qrip) in a union with 
new possibilities related to ripping qrip.

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'



GNFA → Reg. Expression

Let w be a string accepted by G, w∈L(G). 
C o n s i d e r a n a c c e pt i n g s e q u e n c e 
qstart,q1,q2,...,qaccept for string w. 

If qrip is not a state of the sequence, then 
the very same exact sequence will accept w 
in G’ because its transitions R4 contain all 
those R4 in G (except for qrip) in a union with 
new possibilities related to ripping qrip.



GNFA → Reg. Expression

If qrip is a state of the sequence, then the 
same sequence (but with all qrip removed) will 
accept w in G’. That’s because any three 
elements in a row qi,qrip,qj (qi≠qrip≠qj) in G’s 
accepting sequence, will be processed 
identically through states qi,qj in G’. 
Remember that the transitions for qi,qj in G’ 
contain all those R1(R2)*R3 from G involving 
qrip in a union with older possibilities (R4). 
(we can deal with qi,qrip,...,qrip,qj similarly.)



GNFA → Reg. Expression

If qrip is a state of the sequence, then the 
same sequence (but with all qrip removed) will 
accept w in G’. That’s because any three 
elements in a row qi,qrip,qj (qi≠qrip≠qj) in G’s 
accepting sequence, will be processed 
identically through states qi,qj in G’. 
Remember that the transitions for qi,qj in G’ 
contain all those R1(R2)*R3 from G involving 
qrip in a union with older possibilities (R4). 
(we can deal with qi,qrip,...,qrip,qj similarly.)

qrip

q2

G

q2

∅∪ab*(aa)*a*

b∪ab*(aa)*(ab∪ba)

ab∪(aa)*(aa)*a*

b*∪(aa)*(aa)*(ab∪ba)

G'



GNFA → Reg. Expression

If qrip is a state of the sequence, then the 
same sequence (but with all qrip removed) will 
accept w in G’. That’s because any three 
elements in a row qi,qrip,qj (qi≠qrip≠qj) in G’s 
accepting sequence, will be processed 
identically through states qi,qj in G’. 
Remember that the transitions for qi,qj in G’ 
contain all those R1(R2)*R3 from G involving 
qrip in a union with older possibilities (R4). 
(we can deal with qi,qrip,...,qrip,qj similarly.)



GNFA → Reg. Expression

This proved “if w∈L(G) then w∈L(G’)”. We 
should also prove “if w∈L(G’) then w∈L(G)”. 


Let w be a string accepted by G’, i.e.  
w∈L(G’). Consider an accepting sequence 
qstart,q1,q2,...,qaccept for string w. Consider any 
two consecutive states qi,qi+1. The same 
portion of w is processed in G in either part 
of the union, R1(R2)*R3 or R4, along the 
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Combining both statements we get L(G’)=L(G).


By induction hypothesis L(G’)=L(CONVERT(G’)) 
because G’ contains k-1 states. By construction, 
CONVERT(G)=CONVERT(G’). Therefore  
  L(G)=L(CONVERT(G))=L(CONVERT(G’))=L(G’). 
 
                                                QED
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Myhill-Nerode Theorem

Given two regular expressions R and R’ we can 
find out whether they generate the same 
regular language or not :

1. From R and R’, compute NFAs N and N’ 
accepting L(R) and L(R’) (Lemma 1.55).

2.Compute equivalent DFAs M and M’ (Thm 1.39).

3. Using part (b) of Myhill-Nerode we construct 
minimal DFAs W for M and W’ for M’.

4. L(R)=L(R’) iff W≈W’ 
   (≈ means "identical up to state renaming").
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footnote 3 page 46:
Let MA=(QA,∑,δA,q0A,FA) be a DFA accepting LA 
and MB=(QB,∑,δB,q0B,FB) be a DFA accepting LB.

Consider MU=(QAxQB,∑,δU,(q0A,q0B),FU) where 
     δU((q,q’),s) = ( δA(q,s), δB(q’,s) ) for all q,q’,s 
and  
     FU = (FA × QB) ∪ (QA × FB).

LU = LA∪LB.

FU = FA × FB would yield the intersection 
(and not the union) of LA and LB. 
This proves that the class of regular 
languages is also closed under intersection.

footnote 3 page 46:



NON-Regular Languages

B = { 0n1n | n≥0 }


C = { w | w contains an equal number of 0’s 
and 1’s }


D = { w | w contains an equal number of 
occurrences of 01 and 10 as sub-strings }



NON-Regular Languages

B = { 0n1n | n≥0 }


C = { w | w contains an equal number of 0’s 
and 1’s }


D = { w | w contains an equal number of 
occurrences of 01 and 10 as sub-strings }

NON
-Reg

ular



NON-Regular Languages

B = { 0n1n | n≥0 }


C = { w | w contains an equal number of 0’s 
and 1’s }


D = { w | w contains an equal number of 
occurrences of 01 and 10 as sub-strings }

NON
-Reg

ular

NON
-Reg

ular



NON-Regular Languages

B = { 0n1n | n≥0 }


C = { w | w contains an equal number of 0’s 
and 1’s }


D = { w | w contains an equal number of 
occurrences of 01 and 10 as sub-strings }

NON
-Reg

ular

NON
-Reg

ular

Regu
lar



Computability 
Theory
All languages

languages

we can  
describe

Regular

Languages



NON-Regular Languages

Theorem: Some languages are not regular. 
 
Proof idea: all regular languages have 
certain properties. Some languages provably 
do not have one of these properties.
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Reductions
If C is regular then so is B.


Proof: Regular languages are closed under 
intersection (see footnote 3 page 46). Define   
A = L(0*1*). Obviously A is regular. If C was 
regular then so would C∩A = B.  
                                                QED


If B is NON-regular then so is C.

B = { 0n1n | n≥0 }


C = { w | w contains an equal number of 0’s and 1’s }



Reductions

If A is regular then so is A’.


Regular laguages are closed under complement 
(see ex. 1.14), intersection, union, concatenation 
and star. If there exists R, a regular language, 
such that either AC=A’, A*=A’, A∩R=A’, A∪R=A’, 
A∘R=A’ or any combinations of these 
operations then A’ is regular as long as A is.


If A’ is NON-regular then so is A.



Simple Reductions

If A* is NON-regular then so is A.


If A is NON-regular then so is AC.


If A is NON-regular then so is AR.



Complex Reductions

Let A’= (A∪R)∩(AC∪R’)            (R,R’ regular)


Let A’= ((AC∩R)∪(A*∩R’))∘R’’    (R,R’,R’’ regular)


Let A’= (A∘R)∩(AC∘R’)            (R,R’ regular)


If A’ is NON-regular then so is A.



NON-Regular Languages

Theorem: Some languages are not regular. 
 
Proof idea: all regular languages have 
certain properties. Some languages provably 
do not have one of these properties.


Example: A property of all regular languages 
= the Pumping Lemma.
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