COMP-330
 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Lec. 8 : Regular and
NON-Reg. Languages

GNFA \rightarrow Reg. Expression

CLAIM 1.65

For any GNFA G, CONVERT (G) is equivalent to G.
We prove this claim by induction on k, the number of states of the GNFA.

"equivalent" means $L(\operatorname{CONVERT}(G))=L(G)$

GNFA \rightarrow Reg. Expression

- Induction basis
- Let G be a GNFA with exactly $k=2$ states.
- Because of the special form of our GNFA, the two states are the start and accept states. The regular expression on the transition from $q_{\text {start }}$ to $q_{\text {accept }}$ generates the language accepted by this GNFA.

- Because of the special form of our GNFA, the two states are the start and accept states. The regular expression on the transition from $q_{\text {start }}$ to $q_{\text {accept }}$ generates the language accepted by this GNFA.

GNFA \rightarrow Reg. Expression

- Induction basis
- Let G be a GNFA with exactly $k=2$ states.
- Because of the special form of our GNFA, the two states are the start and accept states. The regular expression on the transition from $q_{\text {start }}$ to $q_{\text {accept }}$ generates the language accepted by this GNFA.

GNFA \rightarrow Reg. Expression

GNFA \rightarrow Reg. Expression

- Induction step

GNFA \rightarrow Reg. Expression

- Induction step
- Let G be a GNFA with exactly k>2 states. We assume for induction hypothesis that all GNFA G^{\prime} of $k-1$ states accept the laguage defined by the regular expression obtained via CONVERT, i.e. $L\left(G^{\prime}\right)=L\left(C O N V E R T\left(G^{\prime}\right)\right)$.

GNFA \rightarrow Reg. Expression

- Induction step
- Let G be a GNFA with exactly k>2 states. We assume for induction hypothesis that all GNFA G^{\prime} of $k-1$ states accept the laguage defined by the regular expression obtained via CONVERT, i.e. $L\left(G^{\prime}\right)=L\left(C O N V E R T\left(G^{\prime}\right)\right)$.
- Since $k>2$ then there exists at least one state $\mathrm{qrip}_{\text {wh }}$ which is neither $\mathrm{q}_{\text {start }}$ nor $\mathrm{q}_{\text {accept. }}$

- Let G be a GNFA with exactly k>2 states. We assume for induction hypothesis that all GNFA G^{\prime} of $k-1$ states accept the laguage defined by the regular expression obtained via CONVERT, i.e. $L\left(G^{\prime}\right)=L\left(C O N V E R T\left(G^{\prime}\right)\right)$.
- Since $k>2$ then there exists at least one state qrip which is neither $q_{\text {start }}$ nor qaccept.

- Let G be a GNFA with exactly k>2 states. We assume for induction hypothesis that all GNFA G^{\prime} of $k-1$ states accept the laguage defined by the regular expression obtained via CONVERT, i.e. $L\left(G^{\prime}\right)=L\left(C O N V E R T\left(G^{\prime}\right)\right)$.
- Since $k>2$ then there exists at least one state $\mathrm{q}_{\text {rip }}$ which is neither $\mathrm{q}_{\text {start }}$ nor $\mathrm{q}_{\text {accept }}$.
- Let G^{\prime} be, as in CONVERT, the GNFA obtained after ripping 9rip from G.

- Let G be a GNFA with exactly k>2 states. We assume for induction hypothesis that all GNFA G^{\prime} of $k-1$ states accept the laguage defined by the regular expression obtained via CONVERT, i.e. $L\left(G^{\prime}\right)=L\left(C O N V E R T\left(G^{\prime}\right)\right)$.
- Since $k>2$ then there exists at least one state $\mathrm{Grip}_{\text {wh }}$ which is neither $\mathrm{q}_{\text {start }}$ nor $\mathrm{q}_{\text {accept. }}$
- Let G^{\prime} be, as in CONVERT, the GNFA obtained after ripping 9rip from G.

GNFA \rightarrow Reg. Expression

GNFA \rightarrow Reg. Expression

- Let w be a string accepted by $G, w \in L(G)$. Consider an accepting sequence $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ for string w.

- Let w be a string accepted by $G, w \in L(G)$. Consider an accepting sequence $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ for string w.

- Let w be a string accepted by $G, w \in L(G)$. Consider an accepting sequence $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ for string w.
- If $\mathrm{q}_{\text {rip }}$ is not a state of the sequence, then the very same exact sequence will accept w in G^{\prime} because its transitions R_{4} contain all those R_{4} in G (except for qrip) in a union with new possibilities related to ripping qrip.

GNFA \rightarrow Reg. Expression

- Let w be a string accepted by $G, w \in L(G)$. Consider an accepting sequence $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ for string w.
- If $\mathrm{q}_{\mathrm{rip}}$ is not a state of the sequence, then the very same exact sequence will accept w in G^{\prime} because its transitions R_{4} contain all those R_{4} in G (except for $q_{\text {rip }}$) in a union with new possibilities related to ripping qrip.

GNFA \rightarrow Reg. Expression

- If Grip is a state of the sequence, then the same sequence (but with all qrip removed) will accept w in G^{\prime}. That's because any three elements in a row $q_{i}, q_{\text {rip }}, q_{j}\left(q_{i} \neq q_{\text {rip }} \neq q_{j}\right)$ in $G^{\prime} s$ accepting sequence, will be processed identically through states q_{i}, q_{j} in G^{\prime}. Remember that the transitions for q_{i}, q_{j} in G^{\prime} contain all those $R_{1}\left(R_{2}\right)^{*} R_{3}$ from G involving $q_{\text {rip }}$ in a union with older possibilities (R_{4}). (we can deal with $q_{i}, q_{r i p}, \ldots, q_{r i p}, q_{j}$ similarly.)

- If Grip is a state of the sequence, then the same sequence (but with all qrip removed) will accept w in G^{\prime}. That's because any three elements in a row $q_{i}, q_{r i p}, q_{j}\left(q_{i} \neq q_{r i p} \neq q_{j}\right)$ in $G^{\prime} s$ accepting sequence, will be processed identically through states q_{i}, q_{j} in G^{\prime}. Remember that the transitions for q_{i}, q_{j} in G^{\prime} contain all those $R_{1}\left(R_{2}\right)^{*} R_{3}$ from G involving $q_{\text {rip }}$ in a union with older possibilities (R_{4}). (we can deal with $q_{i}, q_{r i p}, \ldots, q_{r i p}, q_{j}$ similarly.)

GNFA \rightarrow Reg. Expression

- If Grip is a state of the sequence, then the same sequence (but with all qrip removed) will accept w in G^{\prime}. That's because any three elements in a row $q_{i}, q_{\text {rip }}, q_{j}\left(q_{i} \neq q_{\text {rip }} \neq q_{j}\right)$ in $G^{\prime} s$ accepting sequence, will be processed identically through states q_{i}, q_{j} in G^{\prime}. Remember that the transitions for q_{i}, q_{j} in G^{\prime} contain all those $R_{1}\left(R_{2}\right)^{*} R_{3}$ from G involving $q_{\text {rip }}$ in a union with older possibilities (R_{4}). (we can deal with $q_{i}, q_{r i p}, \ldots, q_{r i p}, q_{j}$ similarly.)

GNFA \rightarrow Reg. Expression

- This proved "if $w \in L(G)$ then $w \in L\left(G^{\prime}\right)^{\prime \prime}$. We should also prove "if $w \in L(G$ ') then $w \in L(G)$ ".
- Let w be a string accepted by G^{\prime}, i.e. $w \in L\left(G^{\prime}\right)$. Consider an accepting sequence $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ for string w. Consider any two consecutive states q_{i}, q_{i+1}. The same portion of w is processed in G in either part of the union, $R_{1}\left(R_{2}\right)^{*} R_{3}$ or R_{4}, along the transition between q_{i} and q_{i+1}.

- This proved "if $w \in L(G)$ then $w \in L\left(G^{\prime}\right)^{\prime \prime}$. We should also prove "if $w \in L\left(G^{\prime}\right)$ then $w \in L(G)$ ".
- Let w be a string accepted by G^{\prime}, i.e. $w \in L\left(G^{\prime}\right)$. Consider an accepting sequence $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ for string w. Consider any two consecutive states q_{i}, q_{i+1}. The same portion of w is processed in G in either part of the union, $R_{1}\left(R_{2}\right)^{*} R_{3}$ or R_{4}, along the transition between q_{i} and q_{i+1}.

GNFA \rightarrow Reg. Expression

- This proved "if $w \in L(G)$ then $w \in L\left(G^{\prime}\right)^{\prime \prime}$. We should also prove "if $w \in L(G$ ') then $w \in L(G)$ ".
- Let w be a string accepted by G^{\prime}, i.e. $w \in L\left(G^{\prime}\right)$. Consider an accepting sequence $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ for string w. Consider any two consecutive states q_{i}, q_{i+1}. The same portion of w is processed in G in either part of the union, $R_{1}\left(R_{2}\right)^{*} R_{3}$ or R_{4}, along the transition between q_{i} and q_{i+1}.

GNFA \rightarrow Reg. Expression

- If the portion of w is generated by R_{4} in G^{\prime} then it is also generated by R_{4} in G. If the portion of W is generated by $\mathrm{R}_{1}\left(\mathrm{R}_{2}\right)^{*} \mathrm{R}_{3}$ in G^{\prime} then there exists an m such that it is generated by $R_{1}\left(R_{2}\right) m R_{3}$ and it is also generated in G by R_{1}, going through qrip m times via R_{2} and finally R_{3}. Thus q_{i}, q_{i+1} is replaced by $q_{i}, q_{\text {rip }}, \ldots, q_{\text {rip }}, q_{i+1}$.
- We conclude that if $w \in L\left(G^{\prime}\right)$ then $w \in L(G)$.

- If the portion of w is generated by R_{4} in G^{\prime} then it is also generated by R_{4} in G. If the portion of w is generated by $R_{1}\left(R_{2}\right)^{*} R_{3}$ in G^{\prime} then there exists an m such that it is generated by $R_{1}\left(R_{2}\right) m R_{3}$ and it is also generated in G by R_{1}, going through qrip m times via R_{2} and finally R_{3}. Thus q_{i}, q_{i+1} is replaced by $q_{i}, q_{r i p}, \ldots, q_{\text {rip }}, q_{i+1}$.
- We conclude that if $w \in L\left(G^{\prime}\right)$ then $w \in L(G)$.

GNFA \rightarrow Reg. Expression

- If the portion of w is generated by R_{4} in G^{\prime} then it is also generated by R_{4} in G. If the portion of W is generated by $\mathrm{R}_{1}\left(\mathrm{R}_{2}\right)^{*} \mathrm{R}_{3}$ in G^{\prime} then there exists an m such that it is generated by $R_{1}\left(R_{2}\right) m R_{3}$ and it is also generated in G by R_{1}, going through qrip m times via R_{2} and finally R_{3}. Thus q_{i}, q_{i+1} is replaced by $q_{i}, q_{\text {rip }}, \ldots, q_{\text {rip }}, q_{i+1}$.
- We conclude that if $w \in L\left(G^{\prime}\right)$ then $w \in L(G)$.

GNFA \rightarrow Reg. Expression

- Combining both statements we get $L\left(G^{\prime}\right)=L(G)$.
- By induction hypothesis $L\left(G^{\prime}\right)=L\left(C O N V E R T\left(G^{\prime}\right)\right)$ because G^{\prime} contains $k-1$ states. By construction, CONVERT(G)=CONVERT(G'). Therefore $L(G)=L(\operatorname{CONVERT}(G))=L\left(\operatorname{CONVERT}\left(G^{\prime}\right)\right)=L\left(G^{\prime}\right)$.

DFA \rightarrow GNFA \rightarrow Reg. Exp.

FIGURE 1.62

Typical stages in converting a DFA to a regular expression

DFA \rightarrow GNFA \rightarrow Reg. Exp.

- Two examples

DFA \rightarrow GNFA \rightarrow Reg. Exp.

DFA \rightarrow GNFA \rightarrow Reg. Exp.

DFA \rightarrow GNFA \rightarrow Reg. Exp.

DFA \rightarrow GNFA \rightarrow Reg. Exp.

(b)

DFA \rightarrow GNFA \rightarrow Reg. Exp.

DFA \rightarrow GNFA \rightarrow Reg. Exp.

DFA \rightarrow GNFA \rightarrow Reg. Exp.

(d)

$\left(a(a a \cup b)^{*} a b \cup b\right)\left((b a \cup a)(a a \cup b)^{*} a b \cup b b\right)^{*}\left((b a \cup a)(a a \cup b)^{*} \cup \varepsilon\right) \cup a(a a \cup b)^{*}$

Multiples of 3 (base 10)

(1)
(1) $=0 \cup 3 \cup 649, \quad \mathbb{1}=1 \cup 4 \cup 7, \quad 2=2 \cup 5 \cup 8$

Multiples of 3 (base 10)

(1) $=0 \cup 3, \quad 3=3 \cup 6 \cup 9, \quad 1=1 \cup 4 \cup 7, \quad 2=2 \cup 5 \cup 8$

Multiples of 3 (base 10)

(1) $=0 \cup 3, \quad 3=3 \cup 6 \cup 9, \quad 1=1 \cup 4 \cup 7, \quad 2=2 \cup 5 \cup 8$

Multiples of 3 (base 10)

as

(10U30* u
$\left(\mathbb{1} \cup 30^{*} \mathbb{1}\right)\left(\mathbb{O} \cup 2 \mathbb{0} \mathbb{D}^{*}\right)^{*} 2 \mathbb{D}^{*}$

2U30*2u
$\left(\mathbb{1} \cup 3 \mathbb{D}^{*} \mathbb{1}\right)\left(\mathbb{O} \cup \mathbb{Z} \mathbb{D}^{*} \mathbb{1}\right)^{*}\left(\mathbb{1} \cup \mathbb{Q} \mathbb{D}^{*} \mathbb{Z}\right)$

 (1) $=0 \cup 3, \quad 3=3 \cup 6 \cup 9, \quad 1=1 \cup 4 \cup 7, \quad 2=2 \cup 5 \cup 8$

Multiples of 3 (base 10)

qs

(1)U30* u
 [2U30*2 $\left.\cup\left(\mathbb{1} \cup 30^{*} \mathbb{1}\right)\left(\mathbb{O} \cup 2 \mathbb{0}^{*} \mathbb{1}\right)^{*}\left(\mathbb{1} \cup 2 \mathbb{D}^{*} \mathbb{2}\right)\right]$ $\left[\mathbb{O} \cup 1 \mathbb{1 0}^{*} \mathbb{Z} \cup\left(\mathbb{Z} \cup 100^{*} \mathbb{1}\right)\left(\mathbb{O} \cup \mathbb{2} \mathbb{0}^{*} \mathbb{1}\right)^{*}\left(\mathbb{1} \cup \mathbb{Z} \mathbb{0}^{*} \mathbb{Z}\right)\right]^{*}$ [$\left.10^{*} \cup\left(\mathbb{2} \cup 1 \mathbb{0}^{*} \mathbb{1}\right)\left(\mathbb{0} \cup 2 \mathbb{D}^{*} \mathbb{1}\right)^{*} \mathbb{2} \mathbb{0}^{*}\right]$

(1)=0U3, $\quad 3=3 \cup 6 \cup 9, \quad 1=1 \cup 4 \cup 7, \quad 2=2 \cup 5 \cup 8$

Multiples of 3 (base 10)

$$
\begin{aligned}
& 3=3 \cup 6 \cup 9, \\
& \mathbb{1}=0 \cup 3, \\
& \mathbb{1}=1 \cup 4 \cup 7, \\
& \mathbb{2}=2 \cup 5 \cup 8
\end{aligned}
$$

(1) $u 3 \mathbb{D}^{*} u$
$\left.\left(\mathbb{1} \cup 30^{*} \mathbb{1}\right)(\mathbb{O} \cup 2 \mathbb{1})^{*} \mathbb{1}\right)^{*} 2 \mathbb{D}^{*} u$
[2 U $\left.3 \mathbb{D}^{*} \mathbb{2} \cup\left(\mathbb{1} \cup B(\mathbb{1})^{*} \mathbb{1}\right)\left(\mathbb{O} \cup 2 \mathbb{D}^{*} \mathbb{1}\right)^{*}\left(\mathbb{1} \cup \mathbb{2} \mathbb{D}^{*} \mathbb{2}\right)\right]$
[(1) $\left.\left.\cup \mathbb{1} \mathbb{D}^{*} \mathbb{Z} \cup(\mathbb{2} \cup \mathbb{1})^{*} \mathbb{1}\right)(\mathbb{1} \cup 2(1) \mathbb{1})^{*}\left(\mathbb{1} \cup 20^{*} 2\right)\right]^{*}$
$[10)^{*} \cup\left(2 \cup 100^{*} \mathbb{1}\right)\left(\mathbb{1} \cup 2\left(\mathbb{D}^{*} \mathbb{1}\right)^{*} 2 \mathbb{D O}^{*}\right]$

Application of the

Myhill-Nerode Theorem

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R^{\prime} we can find out whether they generate the same regular language or not :

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R^{\prime} we can find out whether they generate the same regular language or not :

1. From R and R^{\prime}, compute NFAs N and N^{\prime} accepting $L(R)$ and $L\left(R^{\prime}\right)$ (Lemma 1.55).

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R^{\prime} we can find out whether they generate the same regular language or not :

1. From R and R^{\prime}, compute NFAs N and N^{\prime} accepting $L(R)$ and $L\left(R^{\prime}\right)$ (Lemma 1.55).
2. Compute equivalent DFAs M and M^{\prime} (Thm 1.39).

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R^{\prime} we can find out whether they generate the same regular language or not :

1. From R and R^{\prime}, compute NFAs N and N^{\prime} accepting $L(R)$ and $L\left(R^{\prime}\right)$ (Lemma 1.55).
2. Compute equivalent DFAs M and M^{\prime} (Thm 1.39).
3. Using part (b) of Myhill-Nerode we construct minimal DFAs W for M and W^{\prime} for M^{\prime}.

Application of the

Myhill-Nerode Theorem

Given two regular expressions R and R^{\prime} we can find out whether they generate the same regular language or not :

1. From R and R^{\prime}, compute NFAs N and N^{\prime} accepting $L(R)$ and $L\left(R^{\prime}\right)$ (Lemma 1.55).
2. Compute equivalent DFAs M and M^{\prime} (Thm 1.39).
3. Using part (b) of Myhill-Nerode we construct minimal DFAs W for M and W^{\prime} for M^{\prime}.
4. $L(R)=L\left(R^{\prime}\right)$ iff $W \approx W^{\prime}$
(\approx means "identical up to state renaming").

Regular and non-Regular Languages

footnote 3 page 46:

- Let $M_{A}=\left(Q_{A}, \Sigma_{,}, \delta_{A}, q_{0 A}, F_{A}\right)$ be a DFA accepting L_{A} and $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{0}, F_{B}\right)$ be a DFA accepting L_{B}.
- Let $M_{A}=\left(Q_{A}, \Sigma_{,}, \delta_{A}, q_{0 A_{1},} F_{A}\right)$ be a DFA accepting L_{A} and $M_{B}=\left(Q_{B}, \Sigma^{2}, \delta_{B}, q_{0}, F_{B}\right)$ be a DFA accepting L_{B}.
- Consider $M u=\left(Q_{A} \times Q_{B}, \Sigma_{,} \delta_{u}(q \circ A, q \circ B), F u\right)$ where

$$
\delta_{u}\left(\left(q, q^{\prime}\right), s\right)=\left(\delta_{A}(q, s), \delta_{B}\left(q^{\prime}, s\right)\right) \text { for all } q, q^{\prime}, s
$$ and

$$
F \cup=(F A \times Q B) \cup(Q A \times F B) .
$$

- Let $M_{A}=\left(Q_{A}, \Sigma_{,}, \delta_{A}, q_{0 A_{,},} F_{A}\right)$ be a DFA accepting L_{A} and $M_{B}=\left(Q_{B}, \Sigma^{2}, \delta_{B}, q_{0}, F_{B}\right)$ be a DFA accepting L_{B}.
- Consider $M u=\left(Q_{A} \times Q_{B}, \Sigma_{,} \delta_{u}(q \circ A, q \circ B), F u\right)$ where

$$
\delta_{u}\left(\left(q, q^{\prime}\right), s\right)=\left(\delta_{A}(q, s), \delta_{B}\left(q^{\prime}, s\right)\right) \text { for all } q, q^{\prime}, s
$$ and

$$
F \cup=(F A \times Q B) \cup(Q A \times F B) .
$$

- $\operatorname{Lu}=L_{A} U L_{B}$.
- Let $M_{A}=\left(Q_{A}, \Sigma_{,}, \delta_{A}, q_{0 A}, F_{A}\right)$ be a DFA accepting L_{A} and $M_{B}=\left(Q_{B}, \Sigma_{,}, \delta_{B}, q_{0 B}, F_{B}\right)$ be a DFA accepting L_{B}.
- Consider $M u=\left(Q_{A} \times Q_{B}, \Sigma_{,}, \delta_{u},\left(q_{\circ A}, q_{\circ B}\right), F u\right)$ where

$$
\delta u\left(\left(q, q^{\prime}\right), s\right)=\left(\delta_{A}(q, s), \delta_{B}\left(q^{\prime}, s\right)\right) \text { for all } q, q^{\prime}, s
$$ and

$$
F u=(F A \times Q B) \cup(Q A \times F B) .
$$

- $L_{U}=L_{A} U L_{B}$.
- $F_{U}=F_{A} \times F_{B}$ would yield the intersection (and not the union) of L_{A} and L_{B}. This proves that the class of regular languages is also closed under intersection.

NON-Regular Languages

- $B=\{0 n 1 n \mid n \geq 0\}$
- $C=\{w \mid w$ contains an equal number of 0 's and l's $\}$
- $D=\{w \mid w$ contains an equal number of occurrences of 01 and 10 as sub-strings $\}$

NON-Regular Languages

- $C-\{w \mid w$ contains an equal number of 0 's and l's \}
- $D=\{w \mid w$ contains an equal number of occurrences of 01 and 10 as sub-strings $\}$

NON-Regular Languages

- NON-Regular and l's \}
- $D=\{w \mid w$ contains an equal number of occurrences of 01 and 10 as sub-strings $\}$

NON-Regular Languages

- $c=\{$, 1 malar and l's $\} \quad \mathrm{NON}$-R
- $D=\{w \mid w$ con qular qual number of occurrences oReg 10 as sub-strings \}

Computability

Theory

NON-Regular Languages

- Theorem: Some languages are not regular.

Proof idea: all regular languages have certain properties. Some languages provably do not have one of these properties.

Computability

Theory

Reductions

- If C is regular then so is B.
- Proof: Regular languages are closed under intersection (see footnote 3 page 46). Define $A=L\left(0^{*} 1^{*}\right)$. Obviously A is regular. If C was regular then so would $C \cap A=B$.

QED

- If B is NON-regular then so is C.

$$
B=\{0 n 1 n \mid n \geq 0\}
$$

$C=\{w \mid w$ contains an equal number of O's and l's $\}$

Reductions

- If A is regular then so is A^{\prime}.
- Regular laguages are closed under complement (see ex. 1.14), intersection, union, concatenation and star. If there exists R, a regular language, such that either $A^{C}=A^{\prime}, A^{*}=A^{\prime}, A \cap R=A^{\prime}, A \cup R=A^{\prime}$, $A \circ R=A^{\prime}$ or any combinations of these operations then A^{\prime} is regular as long as A is.
- If A^{\prime} is $N O N$-regular then so is A.

Simple Reductions

- If A^{*} is $N O N$-regular then so is A.
- If A is $N O N$-regular then so is A^{C}.
- If A is $N O N$-regular then so is A^{R}.

Complex Reductions

- Let $A^{\prime}=(A \cup R) \cap\left(A^{C} \cup R^{\prime}\right)$
(R, R^{\prime} regular)
- Let $A^{\prime}=\left(\left(A^{c} \cap R\right) \cup\left(A^{*} \cap R^{\prime}\right)\right) \circ R^{\prime \prime}$
($R, R^{\prime}, R^{\prime \prime}$ regular)
- Let $A^{\prime}=(A \circ R) \cap\left(A^{\circ} \circ R^{\prime}\right)$
(R, R^{\prime} regular)
- If A^{\prime} is $N O N$-regular then so is A.

NON-Regular Languages

- Theorem: Some languages are not regular.

Proof idea: all regular languages have certain properties. Some languages provably do not have one of these properties.

- Example: A property of all regular languages = the Pumping Lemma.

COMP-330
 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Lec. 8 : Regular and
NON-Reg. Languages

