COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau
Lec. 7 : Regular
Expressions & GNFA



Regarding HW-1

1.46 Prove that the following languages are not regular. You may use the MMNITHRYHREDDS
and the closure of the class of regular languages under union, intersection,
and complement.

a. {0"1M0"| m,n > 0}
b. {0™1"|m # n}
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— DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet X,
2. €,

3. 0,
4. R; U Ry ,where R; and Ry are regular expressions,
5. Ryo Ry ,where Ry and R; are regular expressions, or

6. R7 , where R; is a regular expression. R = Ryo Rj

In items 1 and 2, the regular expressions a and € represent the
languages {a} and {e}, respectively. In item 3, the regular expres-
sion () represents the empty language. In items 4, 5, and 6, the
expressions represent the languages obtained by taking the union
or concatenation of the languages R; and Rj, or the star of the
language R, respectively.
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In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. ¥*13* = {w| w has at least one 1}.

3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.
5. ()* = {w| w is a string of even length}.’

6. (XX)* = {w| the length of w is a multiple of three}.

7. 01U 10 = {01, 10}.
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In the following instances we assume that the alphabet ¥ is {0,1}.

1.
Ze
3.

0*10* = {w| w contains a single 1}.
Y*13* = {w| w has at least one 1}.
2"001X* = {w| w contains the string 001 as a substring}.

4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.

5.

© ® N o

10.
11.

12.

(22)* = {w| w is a string of even length}.’

(2XX)* = {w] the length of w is a multiple of three}.

01 U 10 = {01, 10}.

0X*0U 1X*1U0U 1 = {w| w starts and ends with the same symbol}.

. (OUEg)1* =01* U 1™,

The expression 0 U € describes the language {0, €}, so the concatenation
operation adds either 0 or € before every string in 1*.

(OUe)(1Ue)={e,0,1,01}.

1*0 = 0.

Concatenating the empty set to any set yields the empty set.
0 = {e}.

The star operation puts together any number of strings from the language
to get a string in the result. If the language is empty, the star operation can
put together 0 strings, giving only the empty string.
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@Two examples

(abua)*

(aub)*aba
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Automata recognize
Regular Expressions

LEMMA 1.60

If a language is regular, then it is described by a regular expression.
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DEFINITION 1.64

Generalized NFA

A generalized nondeterministic finite automaton is a 5-tuple,
(Qa 22, 0, Gstart, Qaccept)a where

1. @ is the finite set of states,
2. 3 is the input alphabet,

3.5: (Q - {qaccept}) X (Q - {qstart})-—>72 is the transition
function,

4. Gqare 1S the start state, and
§. Qaccepr 15 the accept state.




Definition
of GNFA

1 . Q={qs’mr’r,ql,q Z,qaccep’r}

2.2=4{a,b}

3.0 IS given as

FIGURE 1.61
A generalized nondeterministic finite automaton

S q 92 | Guccept
+++++ ab* % b

qr aa a* | abuba
gz (aa)* ab b*

4.Qstart 1S the start state

5.qaccept IS the (unique) accept state




Definition
of GNFA

o Let G =(Q,2,9,9start,Qaccept) be a generalized

nondeterministic finite state automaton and
let w=wiwz..w, (n20) be a string where each
sub-string wie3™.

@ G accepts w if 3 sg,s,...,5n S.1.

1 S0 = Qstart
2. Wi € L( 6(Si_1,Si) ) fori=1 n, and

3. Sn = Qaccept
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regular 2-state
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FIGURE 1.62
‘Typical stages in converting a DFA to a regular expression
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o )R B B (R
R, z

N
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before

2

FIGURE 1.63
Constructing an equivalent GNFA with one fewer state
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arrow connecting them and labeled with a regular expression R.
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GNFA — Reg. Expression

cLaiMm  1.65
For any GNFA G, CONVERT(G) is equivalent to G.

We prove this claim by induction on &, the number of states of the GNFA.

"equivalent” means L( CONVERT(G) ) = L(G)



GNFA — Reg. Expression

® Induction basis

@ Let G be a GNFA with exactly k=2 states.
Because of the special form of our GNFA,
the ftwo states are the start and accept
states. The regular expression on fthe

transition from Qstart t0 Qaccept generates the
language accepted by this GNFA.



GNFA —
Reg. EXxp.

R,
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FIGURE 1.63
Constructing an equivalent GNFA with one fewer state

@ Induction step

@ Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage

defined by the regular expression obtained
via CONVERYT, i.e. L(G')=L(CONVERT(G")).

@ Since k>2 then there exists at least one
state grip Which is neither Qgstart NOT Qaccept-



after
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@ Induction step

@ Let G' be, as in CONVERT, the GNFA
obtained after ripping grix from G.

@ Let w be a string accepted by G, welL(G).
Consider an accepting sequence
qs’rar’r,qlquI---,qaccep’r FOI" S'h"lﬂg W.



after
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@ If qgrip is not a state of the sequence, then
the very same exact sequence will accept w
in G' because its transitions R4 contain all
those R, in G (except for grip) in @ union with
new possibilities related to ripping grip.
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Reg. EXxp.
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@ If qrip is a state of the sequence, then the
same sequence (but with all grip removed) will
accept w in G'. Thats because any three
elements in a row qiqrip.q; (Qi#qrip#q;) in GS
accepting sequence, will be processed
identically through states qi,q; in G'.
Remember that the transitions for qiq; in G’
contain all those Ri(Rz)*Rs from G involving
grip in @ union with older possibilities (Ra).
(we can deal with q;,grip,---,qrip,q; Similarly.)
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@ This proved “if wel(G) then wel(G')”. We
should also prove “if welL(G’) then welL(G)".

@ Let w be a string accepted by G, i.e.
wel(G’). Consider an accepting sequence
Qstart,q1,92,---,accept fOr String w. Consider any
two consecutive states gq;,qi;1. The same
portion of w is processed in G in either part
of the union, Ri(R2)*Rs or R4 along the
transition between g and g;...



GNFA —
Reg. EXxp.

R,
e (Ry) (Ry)* (Ra) U (Ry) @
Ny
<) R,
before after

@ If the portion of w is generated by R in
G’ then it is also generated by R; in G. If
the portion of w is generated by Ri(R2)*R3
in G' then there exists an m such that it
is generated by Ri(Rz)™Rs and it is also
generated in G by R;, going through grip m
times via Rz and finally Rs. Thus qi,qgis1 is
replaced by qi,qrip,---,grip,qi+1-

@ We conclude that if welL(G') then weL(G).



GNFA — Reg. Exp.

@ Combining both statements we get L(G")=L(G).

@ By induction hypothesis L(G')=L(CONVERT(G"))
because G’ contains k-1 states. By construction,
CONVERT(G)=CONVERT(G’). Therefore

L(G)=L(CONVERT(G))=L(CONVERT(G"))=L(G").

QED
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