COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau
Lec. 7 : Regular
Expressions & GNFA

Regarding HW-1

1.46 Prove that the following languages are not regular. You may use the MMNITHRYHREDDS
and the closure of the class of regular languages under union, intersection,
and complement.

a. {0"1M0"| m,n > 0}
b. {0™1"|m # n}

Regular Expressions

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet X,

Regular Expressions

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet X,
2. €,

Regular Expressions

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet X,
2. €,

3. 0,

Regular Expressions

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet 3,

2. €,

3. 0,
4. R; U Ry , where Ry and R, are regular expressions,

Regular Expressions

DEFINITION 1.52
Say that R is a regular expression if R is

1. a for some a in the alphabet 3,
2. €,

3. 0,

4. R; U Ry ,where R; and Ry are regular expressions,
5. Ryo Ry ,where Ry and R; are regular expressions, or

Regular Expressions

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet 3,
2. €,

3. 0,

4. R; U Ry ,where R; and Ry are regular expressions,
5. Ryo Ry ,where Ry and R; are regular expressions, or
6. R7 , where R; is a regular expression.

Regular Expressions

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet 3,
2. €,

3. 0,
4. R; U Ry ,where R; and Ry are regular expressions,
5. Ryo Ry ,where Ry and R; are regular expressions, or

6. R} ,where R, 1s a regular expression. R} = Ryo R

Regular Expressions

DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet 3,
2. €,

3. 0,
4. R; U Ry ,where R; and Ry are regular expressions,

5. Ryo Ry ,where Ry and R; are regular expressions, or
6. R] ,where R; 1s a regular expression. R = RyoRj

In items 1 and 2, the regular expressions a and € represent the

Regular Expressions

— DEFINITION 1.52

Say that R is a regular expression if R is

1. a for some a in the alphabet X,
2. €,

3. 0,
4. R; U Ry ,where R; and Ry are regular expressions,
5. Ryo Ry ,where Ry and R; are regular expressions, or

6. R7 , where R; is a regular expression. R = Ryo Rj

In items 1 and 2, the regular expressions a and € represent the
languages {a} and {e}, respectively. In item 3, the regular expres-
sion () represents the empty language. In items 4, 5, and 6, the
expressions represent the languages obtained by taking the union
or concatenation of the languages R; and Rj, or the star of the
language R, respectively.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.
2. Y*13* = {w| w has at least one 1}.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.
2. ¥*1¥* = {w| w has at least one 1}.
3. X"001¥* = {w| w contains the string 001 as a substring}.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. ¥*13* = {w| w has at least one 1}.

3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. ¥*13* = {w| w has at least one 1}.

3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w)| every 0 in w is followed by at least one 1}.

5. (2X)* = {w| w is a string of even length}.’

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. ¥*13* = {w| w has at least one 1}.

3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.
5. ()* = {w| w is a string of even length}.’

6. (XX)* = {w| the length of w is a multiple of three}.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. ¥*13* = {w| w has at least one 1}.

3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.
5. ()* = {w| w is a string of even length}.’

6. (XX)* = {w| the length of w is a multiple of three}.

EXAMPLE 1.53

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. ¥*13* = {w| w has at least one 1}.

3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.
5. ()* = {w| w is a string of even length}.’

6. (XX)* = {w| the length of w is a multiple of three}.

7. 01U 10 = {01, 10}.

EXAMPLE 1. 853 i s s s e sassasas e

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.

2. ¥*13* = {w| w has at least one 1}.

3. ¥7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.
5. ()* = {w| w is a string of even length}.’

6. (X¥XX)* = {w] the length of w is a multiple of three}.

7. 01U 10 = {01, 10}.
8. 0X*0U 1X*1U0U 1 = {w| w starts and ends with the same symbol}.

EXAMPLE 1. 853 i s s s e sassasas e

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.
2. ¥*13* = {w| w has at least one 1}.
3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.
5. (%)* = {w| w is a string of even length}.?
6. (XXX)* = {w] the length of w is a multiple of three}.
7. 01U 10 = {01, 10}.
8. 0X*0U 1X*1U0U 1 = {w| w starts and ends with the same symbol}.
9. (0Ueg)l* =01* U 1",
The expression 0 U € describes the language {0, €}, so the concatenation
operation adds either O or € before every string in 1*.

EXAMPLE].53 ..

In the following instances we assume that the alphabet ¥ is {0,1}.

1. 0*10* = {w| w contains a single 1}.
2. ¥*13* = {w| w has at least one 1}.
3. X7001X* = {w| w contains the string 001 as a substring}.
4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.
5. (%)* = {w| w is a string of even length}.?
6. (XXX)* = {w] the length of w is a multiple of three}.
7. 01U 10 = {01, 10}.
8. 0X*0U 1X*1U0U 1 = {w| w starts and ends with the same symbol}.
9. (0Ueg)l* =01* U 1",
The expression 0 U € describes the language {0, €}, so the concatenation
operation adds either 0 or € before every string in 1*.

10. (0Ue)(1Ue) = {,0,1,01}.

-

EXAMPLE].53 ..

In the following instances we assume that the alphabet ¥ is {0,1}.

1.
Ze
3.

0*10* = {w| w contains a single 1}.
Y*13* = {w| w has at least one 1}.
2"001X* = {w| w contains the string 001 as a substring}.

4.1%(01*)*= {w| every 0 in w is followed by at least one 1}.

5.

© ® N o

10.
11.

12.

(22)* = {w| w is a string of even length}.’

(2XX)* = {w] the length of w is a multiple of three}.

01 U 10 = {01, 10}.

0X*0U 1X*1U0U 1 = {w| w starts and ends with the same symbol}.

. (OUEg)1* =01* U 1™,

The expression 0 U € describes the language {0, €}, so the concatenation
operation adds either 0 or € before every string in 1*.

(OUe)(1Ue)={e,0,1,01}.

1*0 = 0.

Concatenating the empty set to any set yields the empty set.
0 = {e}.

The star operation puts together any number of strings from the language
to get a string in the result. If the language is empty, the star operation can
put together 0 strings, giving only the empty string.

Regular Expressions vs
Regular Languages

THEOREM 1.54

A language is regular if and only if some regular expression describes it.

LEMMA 1.55

If a language is described by a regular expression, then it is regular.

LEMMA 1.60

If a language is regular, then it is described by a regular expression.

Regular Expressions vs
Regular Languages

LEMMA 1.55

If a language is described by a regular expression, then it is regular.

LEMMA 1.60

If a language is regular, then it is described by a regular expression.

Regular Expressions vs
Regular Languages

LEMMA 1.55

If a language is described by a regular expression, then it is regular.

Regular Expressuons e

generafe eg

Regular Expressions

generate R eg La;_; o]

o Let RA generating LA

Regular ExpreSS|ons
generate Reg L ai

o Let Ra generahng Las

Al XL 1 S 4 TS ;
\‘ \
| j
\

o If A isas mbol a’ then use

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

e $5 ' PR Bk ‘ ;
P
X \
X) 4
3 . g

@ If Ra is a symbol "a” then use.

If Rais "g” then use

Regular Expressions
 generite Reoliiggtdom.

@ If Rais a symbol a’ then use

® If Ra is "€” then use

. If Ry is "@” then use

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

@ If Ra is a symbol "a” then use

@ If Ry is "€” then use

o If Ry is "@” then use

@ If Ra is R u Rz then use Thm 1.45 and recursively use
Ni and N2 s.t. L(N;) = L(R1) and L(N2) = L(R2).

s

Regular Expressions
gener

@ Let Ra gener

@ If Rais a sy
@If Ryise” t
o If

® If Rais RiUR

_ cursively use
N; and N; s.t. L(Nl) —

L(R,) and L(N>) = L(R>).

s

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

@ If Ra is a symbol "a” then use

@ If Ry is "€” then use

o If Ry is "@” then use

@ If Ra is R u Rz then use Thm 1.45 and recursively use
Ni and N2 s.t. L(N;) = L(R1) and L(N2) = L(R2).

s

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

@ If Ra is a symbol "a” then use

@ If Ry is "€” then use

o If Ry is "@” then use

@ If Ra is R u Rz then use Thm 1.45 and recursively use
Ni and N2 s.t. L(N;) = L(R1) and L(N2) = L(R2).

@ If Ra is Ry o Rz then use Thm 1.47 and recursively use

N; and N: s.t. L(Nl) — L(Rl) and L(Nz) — L(Rz).

Regular Expressions

@IfRaisas
@ If Ry is &”
-

@ If Ra is R; ursively use
N; and Nz s.t. L(N;) = L(R1) and L(N2) = L(R2).

@ If Ra is Ry o Rz then use Thm 1.47 and recursively use

N; and N: s.t. L(Nl) — L(Rl) and L(Nz) — L(Rz).

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

@ If Ra is a symbol "a” then use

@ If Ry is "€” then use

o If Ry is "@” then use

@ If Ra is R u Rz then use Thm 1.45 and recursively use
Ni and N2 s.t. L(N;) = L(R1) and L(N2) = L(R2).

@ If Ra is Ry o Rz then use Thm 1.47 and recursively use

N; and N: s.t. L(Nl) — L(Rl) and L(Nz) — L(Rz).

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

@ If Ra is a symbol "a” then use

@ If Rais "€” then use

. If Ry is "@” then use

@ If Ra is Riu Rz then use Thm 1.45 and recursively use
N; and N; s.t. L(Nl) — L(Rl) and L(Nz) = L(Rz).

@ If Ra is Ry o Rz then use Thm 1.47 and recursively use
N; and N: s.t. L(Nl) — L(R1) and L(Nz) — L(Rz).

@ If Ra is R* then use Thm 1.49 and recursively use N s.t.
L(N)=L(R).

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

@ If Ra is a symbol "a” then use
@ If Rpisg”
3

@ If Ra is R; ursively use
N; and N; s.t. L(Nl) — L(Rl) and L(Nz) = L(Rz).

@ If Ra is Ry o Rz then use Thm 1.47 and recursively use
N; and N: s.t. L(Nl) — L(R1) and L(Nz) — L(Rz).

@ If Ra is R* then use Thm 1.49 and recursively use N s.t.
L(N)=L(R).

Regular Expressions
generate Reg. Languages

@ Let Ra generating La.

@ If Ra is a symbol "a” then use

@ If Rais "€” then use

. If Ry is "@” then use

@ If Ra is Riu Rz then use Thm 1.45 and recursively use
N; and N; s.t. L(Nl) — L(Rl) and L(Nz) = L(Rz).

@ If Ra is Ry o Rz then use Thm 1.47 and recursively use
N; and N: s.t. L(Nl) — L(R1) and L(Nz) — L(Rz).

@ If Ra is R* then use Thm 1.49 and recursively use N s.t.
L(N)=L(R).

Reg. Expression — NFA

@Two examples

(abua)*

(aub)*aba

Building an NFA from the regular expression

ab OaOeObO

abU a .

ab

abUa

(abUa)*

FIGURE 1.57
Building an NFA from the regular expression

ab

abUa

(abUa)*

FIGURE 1.57
Building an NFA from the regular expression

aub)*aba

Building an NFA from the regular expression (

(aub)*aba

(aub)*aba

(aub)*aba

aUb

aba

(aUb)*aba

FIGURE 1.59
Building an NFA from the regular expression

aUb

aba

(aUb)*aba

FIGURE 1.59
Building an NFA from the regular expression

Automata recognize
Regular Expressions

LEMMA 1.60

If a language is regular, then it is described by a regular expression.

Example of GNFA

FIGURE 1.61
A generalized nondeterministic finite automaton

Generalized
NFA

For convenience we require that GNFAs always have a special form that meets

the following conditions.

Generalized
NFA

For convenience we require that GNFAs always have a special form that meets
the following conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

Generalized
NFA

For convenience we require that GNFAs always have a special form that meets
the following conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

Generalized

NFA

For convenience we require that GNFAs always have a special form that meets
the following conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

* There is only a single accept state, and it has arrows coming in from every

other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

Generalized

NFA

For convenience we require that GNFAs always have a special form that meets
the following conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

* There is only a single accept state, and it has arrows coming in from every

other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

Generalized

NFA

For convenience we require that GNFAs always have a special form that meets
the tollowing conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

* There is only a single accept state, and it has arrows coming in from every

other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

* Except for the start and accept states, one arrow goes from every state to
every other state and also from each state to itself.

Generalized

NFA

For convenience we require that GNFAs always have a special form that meets
the tollowing conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

* There is only a single accept state, and it has arrows coming in from every

other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

* Except for the start and accept states, one arrow goes from every state to
every other state and also from each state to itself.

Generalized

NFA

For convenience we require that GNFAs always have a special form that meets
the tollowing conditions.

* The start state has transition arrows going to every other state but no arrows
coming in from any other state.

* There is only a single accept state, and it has arrows coming in from every

other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

* Except for the start and accept states, one arrow goes from every state to
every other state and also from each state to itself.

DEFINITION 1.64

Generalized NFA

A generalized nondeterministic finite automaton is a 5-tuple,
(Qa 22, 0, Gstart, Qaccept)a where

1. @ is the finite set of states,
2. 3 is the input alphabet,

3.5: (Q - {qaccept}) X (Q - {qstart})-—>72 is the transition
function,

4. Gqare 1S the start state, and
§. Qaccepr 15 the accept state.

Definition
of GNFA

1 . Q={qs’mr’r,ql,q Z,qaccep’r}

2.2=4{a,b}

3.0 IS given as

FIGURE 1.61
A generalized nondeterministic finite automaton

S q 92 | Guccept
+++++ ab* % b

qr aa a* | abuba
gz (aa)* ab b*

4.Qstart 1S the start state

5.qaccept IS the (unique) accept state

Definition
of GNFA

o Let G =(Q,2,9,9start,Qaccept) be a generalized

nondeterministic finite state automaton and
let w=wiwz..w, (n20) be a string where each
sub-string wie3™.

@ G accepts w if 3 sg,s,...,5n S.1.

1 S0 = Qstart
2. Wi € L(6(Si_1,Si)) fori=1 n, and

3. Sn = Qaccept

Example of GNFA

FIGURE 1.61
A generalized nondeterministic finite automaton

Example of GNFA

FIGURE 1.61
A generalized nondeterministic finite automaton

Example of GNFA

FIGURE 1.61
A generalized nondeterministic finite automaton

Example of GNFA

FIGURE 1.61
A generalized nondeterministic finite automaton

Example of GNFA

FIGURE 1.61
A generalized nondeterministic finite automaton

Example of GNFA

FIGURE 1.61
A generalized nondeterministic finite automaton

Example of GNFA

G
0

FIGURE 1.61
A generalized nondeterministic finite automaton

DFA — GNFA — Reg. Exp.

S-state
GNFA

regular 2-state
expression GNFA

FIGURE 1.62
‘Typical stages in converting a DFA to a regular expression

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

Example NFA—GNFA

DFA — GNFA — Reg. Exp.

S-state
GNFA

regular 2-state
expression GNFA

FIGURE 1.62
‘Typical stages in converting a DFA to a regular expression

Ripping a state

o)R B B (R
R, z

N
<R

before

2

FIGURE 1.63
Constructing an equivalent GNFA with one fewer state

GNFA—
Reg. Exp.

CONVERT(G):

R,
e (Ry) (Ry)* (Ra) U (Ry) .Q
Ny
<R,
before after

GNFA—
Reg. Exp.

CONVERT(G):
1. Let £ be the number of states of G.

R,
e (Ry) (Ry)* (Ra) U (Ry) Q
Ny
<R,
before after

GNFA— MOS0
Reg. Exp. -

CONVERT(G):
1. Let £ be the number of states of G.

2. If k£ = 2, then G must consist of a start state, an accept state, and a single
arrow connecting them and labeled with a regular expression R.

Return the expression R.

CONVERT(G):
1. Let k£ be the number of states of G.

2. If kK = 2, then G must consist of a start state, an accept state, and a single
arrow connecting them and labeled with a regular expression R.
Return the expression R.

3. If £ > 2, we select any state qpip, € @) different from ggre and gaceepe and let
G’ be the GNFA (Q', %, ¢', gstart, Gaccept), Where

Q = Q — {grip}
and for any ¢; € Q' — {qaccepe} and any q; € Q' — {gseare } let
0'(qi,q5) = (B1)(R2)"(R3) U (Ra),
for Ry = 6(qi, Grip), R2 = 6(Grip, Grip), B3 = 0(qrip, ¢;), and R4 = 0(qi, g;)-

CONVERT(G):
1. Let k£ be the number of states of G.

2. If k£ = 2, then G must consist of a start state, an accept state, and a single
arrow connecting them and labeled with a regular expression R.
Return the expression R.

3. If £ > 2, we select any state g, € @ different from ggre and Gaceepe and let
G’ be the GNFA (Q', %, ¢', gstart, Gaccept), Where

Q, — Q - {qrip}v
and for any ¢; € Q' — {qaccepe} and any q; € Q' — {gseare } let
0'(gi, q5) = (R1)(R2)" (R3) U (Ry),

for Rl — 5((1'7:, qrip), Ry = 6(Qripa Qrip)a R3 — J(Qripa qj)a and R4 — 5(qia QJ)‘
4, Compute CONVERT(G") and return this value.

CONVERT(G):
. Let k& be the number of states of G.

2. If k£ = 2, then G must consist of a start state, an accept state, and a single

arrow connecting them and labeled with a regular expression R.
Return the expression R.

. It k > 2, we select any state g,ip € @ different from gseare and Gaceepe and let
G’ be the GNFA (Q', %, ¢', gstart, Gaccept), Where

Q" = Q — {arip},
and for any ¢; € Q' — {qaccept } and any q; € Q' — {Gseare } let
6'(gi>q5) = (R1)(R2)"(R3) U (Ry),
for Ry = 0(qi, grip), R2 = 0(Grip, Grip)s Bz = 0(qrip, ¢5), and Ry = 6(g;, ;)-

4, Compute CONVERT(G") and return this value,

CONVERT(G):
. Let k& be the number of states of G.

2. If k£ = 2, then G must consist of a start state, an accept state, and a single

arrow connecting them and labeled with a regular expression R.
Return the expression R.

. It k > 2, we select any state g,ip € @ different from gseare and Gaceepe and let
G’ be the GNFA (Q', %, ¢', gstart, Gaccept), Where

Q" = Q — {arip},
and for any ¢; € Q' — {qaccept } and any q; € Q' — {Gseare } let
6'(gi>q5) = (R1)(R2)"(R3) U (Ry),
for Ry = 0(qi, grip), R2 = 0(Grip, Grip)s Bz = 0(qrip, ¢5), and Ry = 6(g;, ;)-

4, Compute CONVERT(G") and return this value,

CONVERT(G):
. Let k& be the number of states of G.

2. If k£ = 2, then G must consist of a start state, an accept state, and a single

arrow connecting them and labeled with a regular expression R.
Return the expression R.

. It k > 2, we select any state g,ip € @ different from gseare and Gaceepe and let
G’ be the GNFA (Q', %, ¢', gstart, Gaccept), Where

Q" = Q — {arip},
and for any ¢; € Q' — {qaccept } and any q; € Q' — {Gseare } let
6'(gi>q5) = (R1)(R2)"(R3) U (Ry),
for Ry = 0(qi, grip), R2 = 0(Grip, Grip)s Bz = 0(qrip, ¢5), and Ry = 6(g;, ;)-

4, Compute CONVERT(G") and return this value,

Ry

l !
. 2 : . AV N @ (R) (Ry)* (Re) U (R) @
Ripping of a GINFA €}

befo after
’ aa

»ubaf RIpping Qi

FIGURE 1.61
A generalized nondeterministic finite automaton

(Ry) (Ro)* (R3) U (Ry)
q; > Gj

FIGURE 1.61
A generalized nondeterministic finite automaton

@ (Ry) (Ry)* (Ra) U (Ry) @

after

FIGURE 1.61
A generalized nondeterministic finite automaton

FIGURE 1.61
A generalized nondeterministic finite automaton

@ (Ry) (Ry)* (Ra) U (Ry) @

after

Ripping q

ouab*(aa)*a*

buab*(aa)*(abuba) ‘@

ab

FIGURE 1.61
A generalized nondeterministic finite automaton

@ (Ry) (Ry)* (Ra) U (Ry) @

buab*(aa)*(abuba)

FIGURE 1.61
A generalized nondeterministic finite automaton

@ (Ry) (Ry)* (Ra) U (Ry) @

after

buab*(aa)*(abuba)

FIGURE 1.61
A generalized nondeterministic finite automaton

@ (Ry) (Ry)* (Ra) U (Ry) @

after

Ripping q

buab*(aa)*(abuba) I

‘abu(aa)*(aa)*a*

FIGURE 1.61
A generalized nondeterministic finite automaton

@ (Ry) (Ry)* (Ra) U (Ry) @

after

buab*(aa)*(abuba)

\ b*u(aa)*(aa)*(abubc
‘abu(aa)*(aa)*a*

FIGURE 1.61
A generalized nondeterministic finite automaton

buab*(aa)*(abuba)

b*u(aa)*(aa)*(abuba)
abu(aa)*(aa)*a*

FIGURE 1.61
A generalized nondeterministic finite automaton

@ (Ry) (Ry)* (Ra) U (Ry) @

after

ouab*(aa)*a*

4 D
| buab*(aa)*(abuba) ‘@ Q@

\ b*u(aa)*(aa)*(abuba) /"
abu(aa)*(aa)*a* Ripping q2

FIGURE 1.61
A generalized nondeterministic finite automaton

Ripping of a GNFA €]

after

8

. guab*(aa)*a*

FIGURE 1.61
A generalized nondeterministic finite automaton

Ripping of a GNFA

(buab*(aa)*(abuba))
U

(zuab*(aa)*a*)
(abu(aa)*(aa)*a*)*
(b*u(aa)*(aa)*(abuba))

FIGURE 1.61
A generalized nondeterministic finite automaton

GNFA — Reg. Expression

cLaiMm 1.65
For any GNFA G, CONVERT(G) is equivalent to G.

We prove this claim by induction on &, the number of states of the GNFA.

"equivalent” means L(CONVERT(G)) = L(G)

GNFA — Reg. Expression

® Induction basis

@ Let G be a GNFA with exactly k=2 states.
Because of the special form of our GNFA,
the ftwo states are the start and accept
states. The regular expression on fthe

transition from Qstart t0 Qaccept generates the
language accepted by this GNFA.

GNFA —
Reg. EXxp.

R,
e (Ry) (Ry)* (Ra) U (Ry) @
Ny
<) R,
before after

FIGURE 1.63
Constructing an equivalent GNFA with one fewer state

@ Induction step

@ Let G be a GNFA with exactly k>2 states. We
assume for induction hypothesis that all
GNFA G’ of k-1 states accept the laguage

defined by the regular expression obtained
via CONVERYT, i.e. L(G')=L(CONVERT(G")).

@ Since k>2 then there exists at least one
state grip Which is neither Qgstart NOT Qaccept-

after

FIGURE 1.63
Constructing an equivalent GNFA with one fewer state

@ Induction step

@ Let G' be, as in CONVERT, the GNFA
obtained after ripping grix from G.

@ Let w be a string accepted by G, welL(G).
Consider an accepting sequence
qs’rar’r,qlquI---,qaccep’r FOI" S'h"lﬂg W.

after

FIGURE 1.63
Constructing an equivalent GNFA with one fewer state

@ If qgrip is not a state of the sequence, then
the very same exact sequence will accept w
in G' because its transitions R4 contain all
those R, in G (except for grip) in @ union with
new possibilities related to ripping grip.

GNFA —
Reg. EXxp.

R,
e (Ry) (Ry)* (Ra) U (Ry) @
Ny
<) R,
before after

@ If qrip is a state of the sequence, then the
same sequence (but with all grip removed) will
accept w in G'. Thats because any three
elements in a row qiqrip.q; (Qi#qrip#q;) in GS
accepting sequence, will be processed
identically through states qi,q; in G'.
Remember that the transitions for qiq; in G’
contain all those Ri(Rz)*Rs from G involving
grip in @ union with older possibilities (Ra).
(we can deal with q;,grip,---,qrip,q; Similarly.)

GNFA —
Reg. Exp.

R,
e (Ry) (Ry)* (Ra) U (Ry) @
Ny
<) R,
before after

@ This proved “if wel(G) then wel(G')”. We
should also prove “if welL(G’) then welL(G)".

@ Let w be a string accepted by G, i.e.
wel(G’). Consider an accepting sequence
Qstart,q1,92,---,accept fOr String w. Consider any
two consecutive states gq;,qi;1. The same
portion of w is processed in G in either part
of the union, Ri(R2)*Rs or R4 along the
transition between g and g;...

GNFA —
Reg. EXxp.

R,
e (Ry) (Ry)* (Ra) U (Ry) @
Ny
<) R,
before after

@ If the portion of w is generated by R in
G’ then it is also generated by R; in G. If
the portion of w is generated by Ri(R2)*R3
in G' then there exists an m such that it
is generated by Ri(Rz)™Rs and it is also
generated in G by R;, going through grip m
times via Rz and finally Rs. Thus qi,qgis1 is
replaced by qi,qrip,---,grip,qi+1-

@ We conclude that if welL(G') then weL(G).

GNFA — Reg. Exp.

@ Combining both statements we get L(G")=L(G).

@ By induction hypothesis L(G')=L(CONVERT(G"))
because G’ contains k-1 states. By construction,
CONVERT(G)=CONVERT(G’). Therefore

L(G)=L(CONVERT(G))=L(CONVERT(G"))=L(G").

QED

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau
Lec. 7 : Regular
Expressions & GNFA

