COMP-330

Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

$$
\text { LECTURE } 3 \text { : }
$$ Deterministic F A

COMP 330 Fall 2019:

 Lectures Schedule

 Lectures Schedule}
1-2. Introduction
1.5 . Some basic mathematics
2-3. Deterministic finite automata+Closure properties,3-4. Nondeterministic finite automata
5. Minimization+Myhill-Nerode theorem
6. Determinization+Kleene's theorem
7. Regular Expressions+GNFA
8. Regular Expressions and Languages
$9-10$. The pumping lemma11. Duality12. Labelled transition systems13. MIDTERM
14. Context-free languages
15. Pushdown automata
16. Parsing
17. The pumping lemma for CFLs
18. Introduction to computability
19. Models of computation

Basic computability theory
20. Reducibility, undecidability and Rice's theorem
21. Undecidable problems about CFGs
22. Post Correspondence Problem
23. Validity of FOL is RE / Gödel's and Tarski's thms
24. Universality / The recursion theorem
25. Degrees of undecidability
26. Introduction to complexity

DFA: example

M_{1}

Definition of DFA

- States
- Alphabet
- Transition function
- Start state
- Accept states

Definition of DFA

- States
- Alphabet
- Transition function
- Start state
- Accept states

Definition of DFA

- States
- Alphabet
a, b, c, d
- Transition function
- Start state
- Accept states

Definition of DFA

- States
- Alphabet
a, b, c, d
b
- Transition function
- Start state
- Accept states

Definition of DFA

- States
- Alphabet
a, b, c, d
b
- Transition function
- Start state q_{1}
- Accept states

Definition of DFA

- States
q_{1}

q_{2} q3

- Alphabet
a, b, c, d
b
- Transition function

q_{1}

- Start state

- Accept states

Definition of DFA

DEFINITION 1.5

A finite automaton is a 5-tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function,
4. $q_{0} \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

1001010

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$.
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state, and
5. $F=\left\{q_{2}\right\}$

Regular Languages

- Let $M=(Q, \Sigma, \delta, q 0, F)$ be a finite state automaton and let $w=w_{1} w_{2} \ldots w_{n}(n \geq 0)$ be a string where each symbol w_{i} is from the alphabet Σ.
- M accepts w if states $s_{0}, s_{1}, \ldots, s_{n}$ exist s.t.

1. $\mathrm{s}_{0}=\mathrm{q}_{0}$
2. $s_{i+1}=\delta\left(s_{i}, w_{i+1}\right)$ for $i=0 \ldots n-1$, and
3. $s_{n} \in F$
M_{1}

10010101

We can describe M_{1} formally by writing $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. $\Sigma=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state and
5. $F=\left\{q_{2}\right\}$.

Regular Languages

Regular Languages

- M1 accepts 10010101 since states $\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{8}$ exist s.t.

Regular Languages

- M1 accepts 10010101 since states $\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{8}$ exist s.t.
- 1. $s_{0}=q_{1}$

Regular Languages

- M1 accepts 10010101 since states $\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{8}$ exist st.
- 1. $\mathrm{s}_{0}=\mathrm{q}_{1}$
-

$$
\begin{aligned}
& \text { 2. } s_{1}=q_{2}=\delta\left(q_{1}, 1\right), s_{2}=q_{3}=\delta\left(q_{2}, 0\right) \text {, } \\
& s_{3}=q_{2}=\delta\left(q_{3}, 0\right), s_{4}=q_{2}=\delta\left(q_{2}, 1\right), \\
& s_{5}=q_{3}=\delta\left(q_{2}, 0\right), s_{6}=q_{2}=\delta\left(q_{3}, 1\right), \\
& \mathrm{s}_{7}=\mathrm{q}_{3}=\delta\left(\mathrm{q}_{2}, 0\right), \mathrm{s}_{8}=\mathrm{q}_{2}=\delta\left(\mathrm{q}_{3}, 1\right)
\end{aligned}
$$

Regular Languages

- M1 accepts 10010101 since states $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{8}$ exist s.t.
- 1. $\mathrm{s}_{0}=\mathrm{q}_{1}$
-

2. $s_{1}=q_{2}=\delta\left(q_{1}, 1\right), s_{2}=q_{3}=\delta\left(q_{2}, 0\right)$,
$s_{3}=q_{2}=\delta\left(q_{3}, 0\right), s_{4}=q_{2}=\delta\left(q_{2}, 1\right)$,
$s_{5}=q_{3}=\delta\left(q_{2}, 0\right), s_{6}=q_{2}=\delta\left(q_{3}, 1\right)$,
$\mathrm{s}_{7}=\mathrm{q}_{3}=\delta\left(\mathrm{q}_{2}, 0\right), \mathrm{s}_{8}=\mathrm{q}_{2}=\delta\left(\mathrm{q}_{3}, 1\right)$

- $3 . \mathrm{s}_{8} \in \mathrm{~F}$

Regular Languages

- Let M be a finite state automaton and let $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}(\mathrm{n} \geq 0)$ be a string where each symbol w_{i} is from the alphabet Σ.
- M recognizes language A if

$$
A=\{w \mid M \text { accepts } w\}
$$

DEFINITION 1.16

A language is called a regular language if some finite automaton recognizes it.

Proving the language M_{1} accepts...

- Theorem 1.A:

$L\left(M_{1}\right)=\{$ All binary strings that contain at least one " 1 " and end with an even number of " 0 "s \}

- Theorem 1.B : Let $w \in\{0,1\}^{*}$ be of length $n \geq 0$. 1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s. 3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 " s .

- Theorem 1.B : Let $w \in\{0,1\}^{*}$ be of length $n \geq 0$. 1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow$ w contains at leas \dagger one " 1 " and ends with an even number of " 0 " s. 3) M_{1} stops in state $q_{3} \Leftrightarrow$ w contains at least one " 1 " and ends with an odd number of " 0 " s .

- Theorem 1.B : Let $w \in\{0,1\}^{*}$ be of length $n \geq 0$. 1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s. 3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 " s .

- Theorem 1.B : Let $w \in\{0,1\}^{*}$ be of length $n \geq 0$. 1) M_{1} stops in state $q_{1} \Leftrightarrow$ w contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow$ w contains at leas \dagger one " 1 " and ends with an even number of " 0 " s. 3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 " s .

- Theorem 1.B \Rightarrow Theorem 1.A
- Proof of Theorem 1.B by induction.

- Induction basis

- Induction basis
- Let $w \in\{0,1\}^{*}$ be a string of length $n=0, w=\mathcal{E}$.

- Induction basis
- Let $w \in\{0,1\}^{*}$ be a string of length $n=0, w=\mathcal{E}$.
- The evaluation of w by M_{1} stops in state q_{1} right after starting and rejects w.

- Induction basis
- Let $w \in\{0,1\}^{*}$ be a string of length $n=0, w=\mathcal{E}$.
- The evaluation of w by M_{1} stops in state q_{1} right after starting and rejects w.
- Therefore, 1) is valid because $w=\mathcal{E}$ does not contain a " 1 ". Since there are no strings containing a " 1 " and no strings leading to q_{2} or $q_{3}, 2$) and 3) are also valid.

1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s.
2) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 "s.

- Induction basis

- Let $w \in\{0,1\}^{*}$ be a string of length $n=0, w=\mathcal{E}$.
- The evaluation of w by M_{1} stops in state q_{1} right after starting and rejects w.
- Therefore, 1) is valid because $\mathbf{w = \mathcal { E }}$ does not contain a " 1 ". Since there are no strings containing a " 1 " and no strings leading to q_{2} or $q_{3}, 2$) and 3) are also valid.

1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s. 3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 " s .
2) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s. 3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 " s.

- Induction Step : Let $w \in\{0,1\}^{*}$ be a string of length $n>0$.

1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s. 2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s. 3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 " s.

- Induction Step : Let w $w 0,1\}^{*}$ be a string of length $n>0$.
- We assume for Induction Hypothesis that 1), 2), and 3) are valid for $n-1$ and all strings v of size n-1.

1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s.
2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s.
3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 "s.

- Induction Step : Let $w \in\{0,1\}^{*}$ be a string of length $n>0$.
- We assume for Induction Hypothesis that 1), 2), and 3) are valid for $n-1$ and all strings v of size n-1.
- We now prove that 1), 2), and 3) are also valid for n and all strings w of size n.

- Let $w \in\{0,1\}^{*}$ be a string of length $n>0$.
- If w ends with a " 0 " then it means that

$$
\mathrm{w}=\mathrm{v} 0
$$

with v a string of length $\mathrm{n}-1$. Let q be the state in which M_{1} ends when evaluating v.

- If $\mathrm{q}=\mathrm{q}_{1}$ then by induction we have that $\mathrm{v}=0 \mathrm{n}-1$ and therefore $\mathrm{w}=0^{\text {n }}$ contains no " 1 ", proving 1).

1) M_{1} stops in state $q_{1} \Leftrightarrow w$ contains no " 1 "s.

- Let $w \in\{0,1\}^{*}$ be a string of length $n>0$.
- If w ends with a " 0 " then it means that

$$
\mathrm{w}=\mathrm{v} 0
$$

with v a string of length $\mathrm{n}-1$. Let q be the state in which M_{1} ends when evaluating v.

- If $\mathrm{q}=\mathrm{q}_{1}$ then by induction we have that $\mathrm{v}=0 \mathrm{n}-1$ and therefore $\mathrm{w}=0^{\text {n }}$ contains no " 1 ", proving 1).

- If $\mathrm{q}=\mathrm{q}_{2}$ then by induction we have that v contains at least one " 1 " and ends with an even number of " 0 " s .
- Therefore w contains at least one " 1 " and ends with an odd number of " 0 " s ., proving 3).

3) M_{1} stops in state $q_{3} \Leftrightarrow w$ contains at least one " 1 " and ends with an odd number of " 0 " s .

- If $\mathrm{q}=\mathrm{q}_{2}$ then by induction we have that v contains at least one " 1 " and ends with an even number of " 0 " s .
- Therefore w contains at least one " 1 " and ends with an odd number of " 0 " s., proving 3).

- If $q=q_{3}$ then by induction we have that v contains at least one " 1 " and ends with an odd number of " 0 " s .
- Therefore w contains at least one " 1 " and ends with an even number of " 0 " s greater than zero, proving part of 2).

2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s.

- If $\mathrm{q}=\mathrm{q}_{3}$ then by induction we have that v contains at least one " 1 " and ends with an odd number of " 0 " s .
- Therefore w contains at least one " 1 " and ends with an even number of " 0 " s greater than zero, proving part of 2).

- If w ends with a " 1 " then it means that

$$
\mathrm{w}=\mathrm{v} 1
$$

with v a string of length $n-1$. Let q be the state in which M_{1} ends when evaluating v.

- By examination of δ we conclude that for all $q, \delta(q, 1)=q_{2}$. Thus M_{1} accepts w and 2) is valid whenever w ends with zero " 0 " s . This completes the proof of 2) and of the Thm. QED

2) M_{1} stops in state $q_{2} \Leftrightarrow w$ contains at least one " 1 " and ends with an even number of " 0 " s .

- If w ends with a " 1 " then it means that

$$
\mathrm{w}=\mathrm{vl}
$$

with v a string of length $\mathrm{n}-1$. Let q be the state in which M_{1} ends when evaluating v.

- By examination of δ we conclude that for all $q, \delta(q, 1)=q_{2}$. Thus M_{1} accepts w and 2) is valid whenever w ends with zero " 0 " s . This completes the proof of 2) and of the Thm.

Another example: multiples of 3 ...

- Remember what you learned in elementary school: N is a multiple of 3 if $N=0,3,6,9$ or if the sum of its digits is a multiple of 3 ...
- Example: 54708 is a multiple of 3 because the sum of its digits $5+4+7+0+8=24$ is a multiple of 3 . We know that because the sum of its digits $2+4=6$ is a multiple of 3 .

$\operatorname{gcd}(B, N)=1$
 O MOD 3 (base 10)

$M_{3,10}$

O MOD 3 (base 10)

- Theorem 1.C :

Let $w \in\{0,1, \ldots, 9\}^{*}$ be of length $n \geq 0$.

1) M_{1} stops in state $q_{0} \Leftrightarrow w=0 \bmod 3$.
2) M_{1} stops in state $q_{1} \Leftrightarrow w=1 \bmod 3$.
3) M_{1} stops in state $q_{2} \Leftrightarrow w=2 \bmod 3$.

54708

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54708

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54708

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54708

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54708

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54708

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54708

is a multiple of 3

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54709

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54709

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

54709

is NOT a multiple of 3

$q_{1} \notin F$

$M_{3,10}$ stops in state $q_{r} \Leftrightarrow w=r \bmod 3$

COMP-330

Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

$$
\text { LECTURE } 3 \text { : }
$$ Deterministic F A

