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COMP 330 Fall 2019: 
Lectures Schedule

14. Context-free languages
15. Pushdown automata
16. Parsing
17. The pumping lemma for CFLs
18. Introduction to computability
19. Models of computation                                             Basic computability theory
20. Reducibility, undecidability and Rice’s theorem
21. Undecidable problems about CFGs
22. Post Correspondence Problem
23. Validity of FOL is RE / Gödel’s and Tarski’s thms
24. Universality / The recursion theorem 
25. Degrees of undecidability
26. Introduction to complexity

1-2. Introduction 
      1.5. Some basic mathematics
2-3. Deterministic finite automata 
                                 +Closure properties,
3-4. Nondeterministic finite automata
5. Minimization+ Myhill-Nerode theorem 
6. Determinization+Kleene’s theorem
7. Regular Expressions+GNFA
8. Regular Expressions and Languages
9-10. The pumping lemma
11. Duality
12. Labelled transition systems
13. MIDTERM
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Regular Languages

Let M=(Q,∑, δ,q0,F) be a finite state 
automaton and let w=w1w2...wn (n≥0) be a 
string where each symbol wi is from the 
alphabet ∑.


M accepts w if states s0,s1,...,sn exist s.t. 
    1. s0 = q0  
   2. si+1 = δ(si,wi+1)    for i = 0 ... n-1, and 
   3. sn ∈ F
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Regular Languages

M1 accepts 10010101 since states s0,s1,...,s8 
exist s.t.

    1. s0 = q1

   2. s1 = q2 = δ(q1,1), s2 = q3 = δ(q2,0),  
      s3 = q2 = δ(q3,0), s4 = q2 = δ(q2,1),  
      s5 = q3 = δ(q2,0), s6 = q2 = δ(q3,1),  
      s7 = q3 = δ(q2,0), s8 = q2 = δ(q3,1)

   3. s8 ∈ F



Regular Languages
Let M be a finite state automaton and let 
w=w1w2...wn (n≥0) be a string where each 
symbol wi is from the alphabet ∑.


M recognizes language A if  
 
            A = { w | M accepts w }



Proving the language 
M1 accepts...

Theorem 1.A: 
  
L(M1) = { All binary strings that contain  
           at least one “1” and end with an  
           even number of “0”s }



Theorem 1.B : Let w∈{0,1}* be of length n≥0. 
1) M1 stops in state q1 ⟺ w contains no “1”s. 
2) M1 stops in state q2 ⟺ w contains at least 
one “1” and ends with an even number of “0”s. 
3) M1 stops in state q3 ⟺ w contains at least 
one “1” and ends with an odd number of “0”s.
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Theorem 1.B ⟹ Theorem 1.A 


Proof of Theorem 1.B by induction.
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Induction Step : Let w∈{0,1}* be a string of
length n>0.
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Induction Step : Let w∈{0,1}* be a string of
length n>0.

We assume for Induction Hypothesis that 1),
2), and 3) are valid for n-1 and all strings v
of size n-1.
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Induction Step : Let w∈{0,1}* be a string of 
length n>0.

We assume for Induction Hypothesis that 1), 
2), and 3) are valid for n-1 and all strings v 
of size n-1.

We now prove that 1), 2), and 3) are also 
valid for n and all strings w of size n.

1) M1 stops in state q1 ⟺ w contains no “1”s. 
2) M1 stops in state q2 ⟺ w contains at least 
one “1” and ends with an even number of “0”s. 
3) M1 stops in state q3 ⟺ w contains at least 
one “1” and ends with an odd number of “0”s.



Let w∈{0,1}* be a string of length n>0.


If w ends with a “0” then it means that  
                    w = v0  
with v a string of length n-1. Let q be the 
state in which M1  ends when evaluating v.


If q=q1 then by induction we have that v=0n-1 
and therefore w=0n contains no “1”, proving 1).
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Let w∈{0,1}* be a string of length n>0.


If w ends with a “0” then it means that  
                    w = v0  
with v a string of length n-1. Let q be the 
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If q=q2 then by induction we have that v 
contains at least one “1” and ends with an 
even number of “0”s.


Therefore w contains at least one “1” and 
ends with an odd number of “0”s., proving 3).
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If q=q2 then by induction we have that v 
contains at least one “1” and ends with an 
even number of “0”s.


Therefore w contains at least one “1” and 
ends with an odd number of “0”s., proving 3).
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3) M1 stops in state q3 ⟺ w contains at least 
one “1” and ends with an odd number of “0”s.



If q=q3 then by induction we have that v 
contains at least one “1” and ends with an 
odd number of “0”s.


Therefore w contains at least one “1” and 
ends with an even number of “0”s greater 
than zero, proving part of 2).

0
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If q=q3 then by induction we have that v 
contains at least one “1” and ends with an 
odd number of “0”s.


Therefore w contains at least one “1” and 
ends with an even number of “0”s greater 
than zero, proving part of 2).

0

q2

2) M1 stops in state q2 ⟺ w contains at least 
one “1” and ends with an even number of “0”s.



If w ends with a “1” then it means that  
                   w = v1  
with v a string of length n-1. Let q be the 
state in which M1  ends when evaluating v.


By examination of δ we conclude that for all 
q, δ(q,1)=q2. Thus M1 accepts w and 2) is valid 
whenever w ends with zero “0”s. This 
completes the proof of 2) and of the Thm. 
                                               QED
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If w ends with a “1” then it means that  
                   w = v1  
with v a string of length n-1. Let q be the 
state in which M1  ends when evaluating v.


By examination of δ we conclude that for all 
q, δ(q,1)=q2. Thus M1 accepts w and 2) is valid 
whenever w ends with zero “0”s. This 
completes the proof of 2) and of the Thm. 
                                               QED
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2) M1 stops in state q2 ⟺ w contains at least 
one “1” and ends with an even number of “0”s.



Another example: 
multiples of 3...

Remember what you learned in elementary 
school: N is a multiple of 3 if N=0,3,6,9 or if 
the sum of its digits is a multiple of 3...


Example: 54708 is a multiple of 3 because 
the sum of its digits 5+4+7+0+8=24 is a 
multiple of 3. We know that because the sum 
of its digits 2+4=6 is a multiple of 3.
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0 MOD 3 (base 10)

Theorem 1.C :  
Let w∈{0,1,...,9}* be of length n≥0. 
 
1) M1 stops in state q0 ⟺ w = 0 mod 3. 
 
2) M1 stops in state q1 ⟺ w = 1 mod 3. 
 
3) M1 stops in state q2 ⟺ w = 2 mod 3.
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