COMP-330 Theory of Computation Fall 2019 -- Prof. Claude Crépeau LECTURE 3: Deterministic FA

COMP 330 Fall 2019: Lectures Schedule

- 1-2. Introduction
 1.5. Some basic mathematics
 2-3. Deterministic finite automata +Closure properties,
- 3-4. Nondeterministic finite automata
- 5. Minimization+ Myhill-Nerode theorem
- 6. Determinization+Kleene's theorem
- 7. Regular Expressions+GNFA
- 8. Regular Expressions and Languages
- 9-10. The pumping lemma
- 11. Duality
- 12. Labelled transition systems
- 13. MIDTERM

- 14. Context-free languages
- 15. Pushdown automata
- 16. Parsing
- 17. The pumping lemma for CFLs
- 18. Introduction to computability
- 1 19. Models of computation
 - Basic computability theory
 - 20. Reducibility, undecidability and Rice's theorem
 - 21. Undecidable problems about CFGs
 - 22. Post Correspondence Problem
 - 23. Validity of FOL is RE / Gödel's and Tarski's thms
 - 24. Universality / The recursion theorem
 - 25. Degrees of undecidability
 - 26. Introduction to complexity

DFA: example

States

Alphabet

Transition function

Start state

Accept states

States

Alphabet

Transition function

Start state

Accept states

States

q3

Alphabet

a,b,c,d

Transition function

Start state

Accept states

DEFINITION 1.5

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the set of accept states.

- **4.** q_1 is the start state and
- **5.** $F = \{q_2\}.$

3. δ is described as

 $\begin{array}{c|c} q_2 & \mathbf{q_3} \\ q_3 & q_2 \end{array}$

 q_2

3. δ is described as

3. δ is described as

- $\begin{array}{c|c} q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$
- **4.** q_1 is the start state, and **5.** $F = \{q_2\}.$

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q 2

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q 2

3. δ is described as

F

$$\begin{array}{c|cccc} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

4. q_1 is the start state, and 5.

 $\{q_2\}$

Solution Let M=(Q,Σ, δ,q₀,F) be a finite state automaton and let w=w₁w₂...wn (n≥0) be a string where each symbol wi is from the alphabet Σ.

M <u>accepts</u> w if states s₀,s₁,...,s_n exist s.t.
 1. s₀ = q₀
 2. s_{i+1} = δ(s_i,w_{i+1}) for i = 0 ... n-1, and
 3. s_n ∈ F

M1 <u>accepts</u> 10010101 since states s₀,s₁,...,s₈ exist s.t.

M1 <u>accepts</u> 10010101 since states s₀,s₁,...,s₈ exist s.t.

\odot 1. s₀ = q₁

M1 <u>accepts</u> 10010101 since states s₀,s₁,...,s₈ exist s.t.

$$\odot$$
 1. s₀ = q₁

2.
$$S_1 = q_2 = \delta(q_1, 1), S_2 = q_3 = \delta(q_2, 0),$$

 $S_3 = q_2 = \delta(q_3, 0), S_4 = q_2 = \delta(q_2, 1),$
 $S_5 = q_3 = \delta(q_2, 0), S_6 = q_2 = \delta(q_3, 1),$
 $S_7 = q_3 = \delta(q_2, 0), S_8 = q_2 = \delta(q_3, 1)$

M1 <u>accepts</u> 10010101 since states s₀,s₁,...,s₈ exist s.t.

$$\odot$$
 1. s₀ = q₁

$$2. S_1 = q_2 = \delta(q_1, 1), S_2 = q_3 = \delta(q_2, 0), S_3 = q_2 = \delta(q_3, 0), S_4 = q_2 = \delta(q_2, 1), S_5 = q_3 = \delta(q_2, 0), S_6 = q_2 = \delta(q_3, 1), S_7 = q_3 = \delta(q_2, 0), S_8 = q_2 = \delta(q_3, 1)$$

3. s₈ ∈ F

0

M recognizes language A if

 $A = \{ w \mid M \text{ accepts } w \}$

DEFINITION 1.16

A language is called a *regular language* if some finite automaton recognizes it.

Proving the language M1 accepts...

Theorem 1.A:

L(M₁) = { All binary strings that contain at least one "1" and end with an even number of "0"s }

Theorem 1.B : Let w∈{0,1}* be of length n≥0.
1) M₁ stops in state q₁ ⇔ w contains no "1"s.
2) M₁ stops in state q₂ ⇔ w contains at least one "1" and ends with an even number of "0"s.
3) M₁ stops in state q₃ ⇔ w contains at least one "1" and ends with an odd number of "0"s.

Theorem 1.B : Let w∈{0,1}* be of length n≥0.
1) M₁ stops in state q₁ ⇔ w contains no "1"s.
2) M₁ stops in state q₂ ⇔ w contains at least one "1" and ends with an even number of "0"s.
3) M₁ stops in state q₃ ⇔ w contains at least one "1" and ends with an odd number of "0"s.

Theorem 1.B : Let w∈{0,1}* be of length n≥0.
1) M₁ stops in state q₁ ⇔ w contains no "1"s.
2) M₁ stops in state q₂ ⇔ w contains at least one "1" and ends with an even number of "0"s.
3) M₁ stops in state q₃ ⇔ w contains at least one "1" and ends with an odd number of "0"s.

Theorem 1.B : Let w∈{0,1}* be of length n≥0.
1) M₁ stops in state q₁ ⇔ w contains no "1"s.
2) M₁ stops in state q₂ ⇔ w contains at least one "1" and ends with an even number of "0"s.
3) M₁ stops in state q₃ ⇔ w contains at least one "1" and ends with an odd number of "0"s.

\odot Theorem 1.B \implies Theorem 1.A

Proof of <u>Theorem 1.B</u> by induction.

The evaluation of w by M₁ stops in state q₁ right after starting and rejects w.

The evaluation of w by M₁ stops in state q₁ right after starting and rejects w.

Therefore, 1) is valid because w=E does not contain a "1". Since there are no strings containing a "1" and no strings leading to q₂ or q₃, 2) and 3) are also valid.

M₁ stops in state q₁ ⇔ w contains no "1"s.
 M₁ stops in state q₂ ⇔ w contains at least one "1" and ends with an even number of "0"s.
 M₁ stops in state q₃ ⇔ w contains at least one "1" and ends with an odd number of "0"s.

Induction basis

The evaluation of w by M₁ stops in state q₁ right after starting and rejects w.

Therefore, 1) is valid because w=E does not contain a "1". Since there are no strings containing a "1" and no strings leading to q₂ or q₃, 2) and 3) are also valid.

Induction Step : Let w∈{0,1}* be a string of length n>0.

Induction Step : Let w∈{0,1}* be a string of length n>0.

We assume for Induction Hypothesis that 1),
 2), and 3) are valid for n-1 and all strings v
 of size n-1.

Induction Step : Let w∈{0,1}* be a string of length n>0.

We assume for Induction Hypothesis that 1),
 2), and 3) are valid for n-1 and all strings v
 of size n-1.

We now prove that 1), 2), and 3) are also valid for n and all strings w of size n.

If w ends with a "0" then it means that w = v0

with v a string of length n-1. Let q be the state in which M_1 ends when evaluating v.

If q=q1 then by induction we have that v=0ⁿ⁻¹ and therefore w=0ⁿ contains no "1", proving 1).

If q=q₂ then by induction we have that v contains at least one "1" and ends with an even number of "0"s.

Therefore w contains at least one "1" and ends with an odd number of "0"s., proving 3).

3) M_1 stops in state $q_3 \Leftrightarrow w$ contains at least one "1" and ends with an odd number of "0"s.

If q=q₂ then by induction we have that v contains at least one "1" and ends with an even number of "0"s.

Therefore w contains at least one "1" and ends with an odd number of "0"s., proving 3).

If q=q₃ then by induction we have that v contains at least one "1" and ends with an odd number of "0"s.

Therefore w contains at least one "1" and ends with an even number of "0"s greater than zero, proving part of 2).

- Output: 2) M₁ stops in state q₂ ⇔ w contains at least one `1' and ends with an even number of `0's.
- If q=q₃ then by induction we have that v contains at least one "1" and ends with an odd number of "0"s.
- Therefore w contains at least one "1" and ends with an even number of "0"s greater than zero, proving part of 2).

If w ends with a "1" then it means that
 w = v1
 with v a string of length n-1. Let q be the
 state in which M1 ends when evaluating v.

By examination of δ we conclude that for all q, δ(q,1)=q₂. Thus M₁ accepts w and 2) is valid whenever w ends with zero "0"s. This completes the proof of 2) and of the Thm.

2) M₁ stops in state q₂ ⇔ w contains at least one "1" and ends with an even number of "0"s.
If w ends with a "1" then it means that w = v1
with v a string of length n-1. Let q be the state in which M₁ ends when evaluating v.

By examination of δ we conclude that for all q, δ(q,1)=q₂. Thus M₁ accepts w and 2) is valid whenever w ends with zero "O"s. This completes the proof of 2) and of the Thm.

Another example: multiples of 3...

- Remember what you learned in elementary school: N is a multiple of 3 if N=0,3,6,9 or if the sum of its digits is a multiple of 3...
- Example: 54708 is a multiple of 3 because the sum of its digits 5+4+7+0+8=24 is a multiple of 3. We know that because the sum of its digits 2+4=6 is a multiple of 3.

gcd(B,N) = 1 0 MOD 3 (base 10)

0 MOD 3 (base 10)

Theorem 1.C:
 Let w∈{0,1,...,9}* be of length n≥0.

1) M_1 stops in state $q_0 \Leftrightarrow w = 0 \mod 3$.

2) M_1 stops in state $q_1 \iff w = 1 \mod 3$.

3) M_1 stops in state $q_2 \Leftrightarrow w = 2 \mod 3$.

 $M_{3,10}$ stops in state $q_r \iff w = r \mod 3$

 $M_{3,10}$ stops in state $q_r \iff w = r \mod 3$

 $M_{3,10}$ stops in state $q_r \Leftrightarrow w = r \mod 3$

54708 is a multiple of 3

$M_{3,10}$ stops in state $q_r \Leftrightarrow w = r \mod 3$

54709 is NOT a multiple of 3 (qı ∉F

$M_{3,10}$ stops in state $q_r \Leftrightarrow w = r \mod 3$

COMP-330 Theory of Computation Fall 2019 -- Prof. Claude Crépeau LECTURE 3: Deterministic FA