COMP-330

Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lecture 2 : Regular Expressions \& DFAs

- 2019 T.A.S :

Pouriya Alikhani
Pierre-William Breau Anirudha Jita Justin Li
Yanjia Li
Shiquan Zhang

- Office Hours :

Claude : Wednesday 13:00-16:00 ENGMC 110N Pouriya : Friday 13:00-14:00 ENGTR 3090
Pierre-William : Monday 15:00-16:00 ENGTR 3110 Anirudha: Monday 16:00-17:00 ENGTR 3090

Justin : Tuesday 15:00-16:00 ENGTR 3110
Yanjia : Friday 10:00-11:00 ENGTR 3110
Shiquan : Thursday 15:00-16:00 ENGTR 3110

COMP-330 Fall 2019 — Weekly Schedule

Mon 10:00	Tue 10:00	Wed 10:00	Thu 10:00	Yanjia
Mon 10:30	Tue 10:30	Wed 10:30	Thu 10:30	TR-3110
Mon 11:00	Tue 11:00	Wed 11:00	Thu 11:00	Fri 11:00
Mon 11:30	Tue 11:30	Wed 11:30	Thu 11:30	Fri 11:30
Mon 12:00	Tue 12:00	Wed 12:00	Thu 12:00	Fri 12:00
Mon 12:30	Tue 12:30	Wed 12:30	Thu 12:30	Fri 12:30
Mon 13:00 Mon 13:30	Claude MA-II2 course	Claude MC-IION office hours	Claude MA-II 2 course	Pouriya TR-3090
Mon 14:00				Fri 14:00
Mon 14:30	Tue 14:30		Thu 14:30	Fri 14:30
$\begin{aligned} & \hline \text { Pierre-W. } \\ & \text { TR-3 I IO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Justin } \\ & \text { TR-3 } 10 \end{aligned}$		Shiquan TR-3 10	Fri 15:00 Fri 15:30
Anirudha	Tue 16:00	Wed 16:00	TA	Fri 16:00
TR-3090	Tue 16:30	Wed 16:30	meeting ?	Fri 16:30

COMP-330 Fall 2019—Weekly Schedule

Mon 10:00	Tue 10:00	Wed 10:00	Thu 10:00	Yanjia
Mon 10:30	Tue 10:30	Wed 10:30	Thu 10:30	TR-3110
Mon 11:00	Tue 11:00	Wed 11:00	Thu 11:00	Fri 11:00
Mon 11:30	Tue 11:30	Wed 11:30	Thu 11:30	Fri 11:30
csus Helpdesk TR-3090	CSUS	CSUS	CSUS	
	Claude MA-II2	Claude MC-IION office hours	Claude MA-II2	Pouriya TR-3090
	course		course	Fri 14:00
	Iue		Thu 14:'	GSUS Helpdesk TR-3090
$\begin{array}{\|c} \hline \text { Pierre-W. } \\ \text { TR-3IIIO } \\ \hline \end{array}$	$\begin{aligned} & \text { Justin } \\ & \text { TR-3 } 110 \\ & \hline \end{aligned}$		Shiquan TR-3IIO	
Anirudha TR-3090	$\begin{array}{\|l\|} \hline \text { Helpdesk } \\ \text { TR-3090 } \end{array}$	$\begin{array}{\|l\|} \hline \text { Helpdesk } \\ \text { TR-3090 } \end{array}$	$\begin{array}{\|l\|} \hline \text { Helpdesk } \\ \text { TR-3090 } \end{array}$	

MC = MCENG $=$ McConnell \cdot TR $=$ ENGTR $=$ Trottier

Post

Correspondence Problem

Post

Correspondence Problem

- Theorem:

The Post Correspondence Problem cannot be decided by any algorithm (or computer program). In particular, no algorithm can identify in a finite amount of time some instances that have a No outcome. However, if a solution exists, we can ALWAYS find it.

Post

Correspondence Problem

Post

Correspondence Problem

- Proof:

Reduction technique - if PCP was decidable then another undecidable problem (the halting problem) would be decidable.

The Halting Problem

The Halting Problem

- Notice that an algorithm is a piece of text.

The Halting Problem

- Notice that an algorithm is a piece of text.

- An algorithm can receive text as input.

The Halting Problem

. Notice that an algorithm is a piece of text.

6. An algorithm can receive text as input.

- An algorithm can receive the text description of an algorithm as input.

The Halting Problem

6 Notice that an algorithm is a piece of text.

- An algorithm can receive text as input.

6 An algorithm can receive the text description of an algorithm as input.

- The Halting Problem:

Given two texts A and B, consider A as an algorithm and B as an input. Will algorithm A halt (as opposed to loop forever) on input B ?

The Halting Problem and PCP

The Halting Problem and PCP

- Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem as well.

The Halting Problem and PCP

- Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem as well.
- Conclusion: PCP cannot be decided either.

Computability Theory

Computability

 Theory

Computability

Theory

All languages
languages that we can describe

Computability

Theory

Complexity

 Theory
Complexity

Theory
languages that we can decide

Complexity

Theory

languages that

 we can decidelanguages
that we can check efficiently

Complexity

Theory

languages that

 we can decidelanguages that we can check efficiently
languages that we can decide efficiently

Not all problems were born equal...

Is it possible to paint a colour on each region (province) of a map so that no neighbours are of the same colour?

Obviously, yes, if you can use as many colours as you like...

2-colouring problem

3-colouring problem

3-colouring problem

4-colouring problem

K-colouring of
 Maps (planar graphs)

K-colouring of

Maps (planar graphs)

- $K=1$, only the maps with zero or one region are 1-colourable.

K-colouring of

Maps (planar graphs)

- K=1, only the maps with zero or one region are 1-colourable.
- $K=2$, easy to decide. Impossible as soon as 3 regions touch each other.

K-colouring of

Maps (planar graphs)

- K=1, only the maps with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.

K-colouring of

Maps (planar graphs)

- $K=1$, only the maps with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.
- K ≥ 4, all maps are K-colourable. (looong proof) Not easy to find a K-colouring. However it is easy to verify a solution.
http://people.math.gatech.edu/~thomas/FC/fourcolor.html

3-colouring of Maps

3-colouring of Maps

- Seems hard to solve in general,

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given,

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given,
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to MANY similar problems !

Examples of NP-Complete Problems

Examples of

NP-Complete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?

Examples of

NP-Complete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.

Examples of

NP-Complete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.
- KnapSack: given items with various weights, is there of subset of them of total weight K.

NP-Complete Problems

NP-Complete Problems

- Many practical problems are NP-complete.

NP-Complete Problems

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.

NP-Complete Problems

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.

NP-Complete Problems

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.
- Some books list hundreds of such problems.

NP-Complete Problems

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.
- Some books list hundreds of such problems.

Tractable Problems (P)

Tractable Problems (P)

- 2-colorability of maps.

Tractable Problems (P)

- 2-colorability of maps.
- Primality testing. (but probably not factoring)

Tractable Problems (P)

2 2-colorability of maps.

- Primality testing. (but probably not factoring)
- Solving NxNxN Rubik's cube.

Tractable Problems (P)

- 2-colorability of maps.
- Primality testing. (but probably not factoring)
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.

Tractable Problems (P)

2-colorability of maps.

- Primality testing. (but probably not factoring)
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.
- Sorting elements.

Tractable Problems (P)

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for PolynomialTime computable.

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for PolynomialTime computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for PolynomialTime computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

Complexity

Theory
Decidable
Languages

Complexity

Theory
Decidable
Languages

Complexity

Theory
Decidable
Languages

Complexity

Theory

Decidable
Languages

Complexity

Theory
Decidable
Languages
$P=N P ?$

Beyond NP-Completeness

Beyond NP-Completeness

- PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.

Beyond NP-Completeness

- PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them may be solved within reasonable (Poly) amount of time, then all of them can.

PSpace Completeness

PSpace Completeness

- Geography Game:

Given a set of country names: Arabia, Cuba, Canada, France, Italy, Japan, Korea, Vietnam

PSpace Completeness

- Geography Game:

Given a set of country names: Arabia, Cuba, Canada, France, Italy, Japan, Korea, Vietnam

- A two player game: One player chooses a name. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Generalized Geography

Generalized Geography

- Given an arbitrary set of names: w_{1}, \ldots, w_{n}.

Generalized Geography

- Given an arbitrary set of names: W_{1}, \ldots, W_{n}.
- Is there a winning strategy for the first player to the previous game?

Complexity

Theory
Decidable
Languages
complete PSpace

NP

Complexity

Theory
Decidable
Languages PSpace

$N P=P S p a c e ?$

Theoretical

 Computer Science
Theoretical Computer Science

- Challenges of TCS:

Theoretical Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems.
(Algorithms and Data Structures)

Theoretical Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems.
(Algorithms and Data Structures)
- PROVE that certain problems are NOT computable within a certain time or space.

Theoretical Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems. (Algorithms and Data Structures)
- PROVE that certain problems are NOT computable within a certain time or space.
- Consider new models of computation. (Such as a Quantum Computer)

COMP 330 Fall 2017:
 Lectures Schedule

1-2. Introduction

1.5. Some basic mathematics
 2-3. Deterministic finite automata
 +Closure properties,

3-4. Nondeterministic finite automata
5. Minimization+Myhill-Nerode theorem
6. Determinization+Kleene's theorem
7. Regular Expressions+GNFA
8. Regular Expressions and Languages
$9-10$. The pumping lemma
11. Duality
12. Labelled transition systems
13. MIDTERM
14. Context-free languages
15. Pushdown automata
16. Parsing
17. The pumping lemma for CFLs
18. Introduction to computability
19. Models of computation

Basic computability theory
20. Reducibility, undecidability and Rice's theorem
21. Undecidable problems about CFGs
22. Post Correspondence Problem
23. Validity of FOL is RE / Gödel's and Tarski's thms
24. Universality / The recursion theorem
25. Degrees of undecidability
26. Introduction to complexity

Deterministic Finite Automata,
and Regular expressions

Deterministic Finite Automata,

 and Regular expressions

Swing doors

Swing doors

door

Swing doors

Swing doors

door

Swing doors

Swing doors

Swing doors

Swing doors

Swing doors

input signal

	NEITHER	FRONT	REAR	BOTH
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

Elevators

Elevators

COMP-330

Theory of Computation

Fall 2017 -- Prof. Claude Crépeau

Lecture 2 : Regular Expressions \& DFAs

