COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 22-23 : Introduction to Complexity

Not all problems were born equal...

Not all problems were born equal...

Is it possible to paint a colour on each region of a map so that no neighbours are of the same colour ?

Obviously, yes, if you can use as many colours as you like...

1 colouring problem

Only two maps are 1-colourable.

2 COLOUTING problem

Very few maps are 2-colourable.

Very few maps are 2-colourable.

2 Colouring ncoblem

Most maps are not 2-colourable.

@ 2-colorability of maps.

- @ 2-colorability of maps.
- Primality testing.
 (but probably not factoring)

- @ 2-colorability of maps.
- Primality testing.
 (but probably not factoring)
- @ Solving NXNXN Rubik's cube.

- @ 2-colorability of maps.
- Primality testing.
 (but probably not factoring)
- @ Solving NXNXN Rubik's cube.
- @ Finding a word in a dictionary.

- @ 2-colorability of maps.
- Primality testing.
 (but probably not factoring)
- @ Solving NXNXN Rubik's cube.
- o Finding a word in a dictionary.
- @ Sorting elements...

 Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.
- More formally, there exists a TM to compute solutions to the problem and there exists a polynomial Q such that the number of steps on each input x before halting is no more than Q(|x|).

 Fortunately, many practical problems are tractable. The name P stands for
 Polynomial-Time computable.

- Fortunately, many practical problems are tractable. The name P stands for
 Polynomial-Time computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.

- Fortunately, many practical problems are tractable. The name P stands for
 Polynomial-Time computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

The name P stands for Polynomial-Time computable.

- The name P stands for Polynomial-Time computable.
- Q: Why choose this level of granularity?
 Why not choose linear-time for instance?

- The name P stands for Polynomial-Time computable.
- Q: Why choose this level of granularity? Why not choose linear-time for instance?
- A: because P is the same for all types of Turing machines and any reasonable model. This is not true of linear-time for instance...

THEOREM **7.8**

Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time multitape Turing machine has an equivalent $O(t^2(n))$ time single-tape Turing machine.

Decidable Languages

Languages

NP

Languages

NP

P

Complexity

Decidable Languages

P = **NP** ?

P

NP

S-COLOUTING problem

some maps are 3-colourable.

some maps are not 3-colourable.

4 Colouring problem

All maps are 4-colourable.

4-colouring problem

All maps are 4-colourable.

 K=1 only the maps with zero or one region are 1-colourable.

 K=1 only the maps with zero or one region are 1-colourable.

K=2 easy to decide. Impossible as soon as 3
 regions touch each other.

- K=1 only the maps with zero or one region are 1-colourable.
- K=2 easy to decide. Impossible as soon as 3
 regions touch each other.
- K=3 No known efficient algorithm to decide. It is easy to verify a solution.

- K=1 only the maps with zero or one region
 are 1-colourable.
- K=2 easy to decide. Impossible as soon as 3
 regions touch each other.
- K=3 No known efficient algorithm to decide. It is easy to verify a solution.
- K≥4 all maps are 4-colourable. (long proof)
 Does not imply easy to find a 4-colouring.

@ Seems hard to solve in general,

s-colouring of Maps

@ Seems hard to solve in general,

Is easy to verify when a solution is given,
 (is in NP : guess a solution and verify it)

s-colouring of Maps

@ Seems hard to solve in general,

- Is easy to verify when a solution is given,
 (is in NP : guess a solution and verify it)
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to ALL problems in NP!

SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true ?

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true ?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true ?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.
- Sknapsack: given items with various weights, is there of subset of them of total weight K.

@ Many practical problems are NP-complete.

Many practical problems are NP-complete.
If any of them is easy, they are all easy.

Many practical problems are NP-complete.
If any of them is easy, they are all easy.
In practice, some of them may be solved efficiently in some special cases.

- · Many practical problems are NP-complete.
- @ If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.
- Some books list hundreds of such problems.

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

6

0

6

Michael R. Garey / David S. Johnson

Appen	ndix: A List of NP-Complete Problems		187
A1	Graph Theory		190
	A1.1 Covering and Partitioning		190
	A1.2 Subgraphs and Supergraphs		194
	A1.3 Vertex Ordering		199
	A1.4 Iso- and Other Morphisms		202
	A1.5 Miscellaneous		203
A2	Network Design		206
	A2.1 Spanning Trees		206
	A2.2 Cuts and Connectivity		209
	A2.3 Routing Problems		211
	A2.4 Flow Problems		214
	A2.5 Miscellaneous	.	218
A3	Sets and Partitions		221
	A3.1 Covering, Hitting, and Splitting		221
	A3.2 Weighted Set Problems		223
A4	Storage and Retrieval.		226
	A4.1 Data Storage		226
	A4.2 Compression and Representation		228
	A4.3 Database Problems		232

Appen	dix: A List of NP-Complete Problems
A1	Graph Theory
	A1.1 Covering and Partitioning
	A1.2 Subgraphs and Supergraphs
	A1.3 Vertex Ordering
	A1.4 Iso- and Other Morphisms
	A1.5 Miscellaneous
A2	Network Design
	A2.1 Spanning Trees
	A2.2 Cuts and Connectivity
	A2.3 Routing Problems
	A2.4 Flow Problems
	A2.5 Miscellaneous
A3	Sets and Partitions
	A3.1 Covering, Hitting, and Splitting
	A3.2 Weighted Set Problems
A4	Storage and Retrieval
	A4.1 Data Storage
	A4.2 Compression and Representation
	A4.3 Database Problems

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

A5	Sequencing and Scheduling
	A5.1 Sequencing on One Processor
	A5.2 Multiprocessor Scheduling
	A5.3 Shop Scheduling
	A5.4 Miscellaneous
A6	Mathematical Programming
A7	Algebra and Number Theory
	A7.1 Divisibility Problems
	A7.2 Solvability of Equations
	A7:3 Miscellaneous
A8	Games and Puzzles
A9	Logic
	A9.1 Propositional Logic
	A9.2 Miscellaneous
A10	Automata and Language Theory
	A10.1 Automata Theory
	A10.2 Formal Languages
A11	Program Optimization
	A11.1 Code Generation
	A11.2 Programs and Schemes
A12	Miscellaneous 279
A13	Open Problems
AAA	

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

A5	Sequencing and Scheduling
	A5.1 Sequencing on One Processor
	A5.2 Multiprocessor Scheduling
	A5.3 Shop Scheduling
	A5.4 Miscellaneous
A6	Mathematical Programming
A7	Algebra and Number Theory
	A7.1 Divisibility Problems
	A7.2 Solvability of Equations
	A7:3 Miscellaneous
A8	Games and Puzzles
A9	Logic
117	A9.1 Propositional Logic
	A9.2 Miscellaneous 261
A10	Automata and Language Theory 265
	A10.1 Automata Theory 265
	A10.2 Formal Languages 267
A 1 1	Program Ontimization 272
AII	A 11 1 Code Generation 272
	All 2 Programs and Schomes 275
412	ATT.2 Programs and Schemes
AIZ	Miscellaneous
A13	Open Problems

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

100 pages 1979 !!!

Decidable Languages

Languages

NP

Languages

NP

P

Complexity

Decidable Languages

P = NP ?

P

NP

complete

NP

P

P = **NP** ?

PVSNP

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

PVSNP

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, **TIME**(t(n)), to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$\mathbf{P} = \bigcup_{k} \mathrm{TIME}(n^k).$$

DEFINITION 7.9

Let N be a nondeterministic Turing machine that is a decider. The **running time** of N is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that N uses on any branch of its computation on any input of length n, as shown in the following figure.

FIGURE 7.10 Measuring deterministic and nondeterministic time

PVSNP

DEFINITION 7.21

NTIME(t(n)) = {L | L is a language decided by a O(t(n)) time nondeterministic Turing machine}.

COROLLARY 7.22 NP = $\bigcup_k \operatorname{NTIME}(n^k)$.

THEOREM 7.11

Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time nondeterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic single-tape Turing machine.

PVSNP

A *clique* in an undirected graph is a subgraph, wherein every two nodes are connected by an edge. A *k-clique* is a clique that contains k nodes. Figure 7.23 illustrates a graph having a 5-clique

PVSNP

A *clique* in an undirected graph is a subgraph, wherein every two nodes are connected by an edge. A *k-clique* is a clique that contains k nodes. Figure 7.23 illustrates a graph having a 5-clique

FIGURE 7.23 A graph with a 5-clique

The clique problem is to determine whether a graph contains a clique of a specified size. Let

 $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k \text{-clique} \}.$

COMPLETENESS

$\exists \mathbf{x}, \forall x \in L, \exists w, [\mathbf{x}, w) \text{ accepts }]$

COMPLETENESS

$\exists \mathbf{x}, \forall x \in L, \exists w, [\mathbf{x}, w) \text{ accepts }]$

COMPLETENESS

$\exists \mathbf{x}, \forall x \in L, \exists w, [\mathbf{x}, w) \text{ accepts }]$

SOUNDNESS

SOUNDNESS

X∉L

$\exists \mathbf{x}, \forall x \in L, \exists w, [\mathbf{x}(x, w) \text{ accepts }] \\ \text{and } \forall x \notin L, \forall w, [\mathbf{x}(x, w) \text{ rejects }] \end{cases}$

SOUNDNESS

X∉L

$\exists \mathbf{\tilde{s}}, \forall x \in L, \exists w, [\mathbf{\tilde{s}}(x, w) \text{ accepts }] \\ \text{and } \forall x \notin L, \forall w, [\mathbf{\tilde{s}}(x, w) \text{ rejects }] \end{cases}$

THEOREM 7.24

CLIQUE is in NP.

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

 $V = \texttt{``On input} \langle \langle G, k \rangle, c \rangle:$

- 1. Test whether c is a set of k nodes in G
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF If you prefer to think of NP in terms of nondeterministic polynomial time Turing machines, you may prove this theorem by giving one that decides *CLIQUE*. Observe the similarity between the two proofs.

N = "On input $\langle G, k \rangle$, where G is a graph:

- 1. Nondeterministically select a subset c of k nodes of G.
- **2.** Test whether G contains all edges connecting nodes in c.
- 3. If yes, accept; otherwise, reject."

A **Boolean formula** is an expression involving Boolean variables and operations. For example,

$$\phi = (\overline{x} \wedge y) \lor (x \wedge \overline{z})$$

is a Boolean formula. A Boolean formula is *satisfiable* if some assignment of 0s and 1s to the variables makes the formula evaluate to 1. The preceding formula is satisfiable because the assignment x = 0, y = 1, and z = 0 makes ϕ evaluate to 1. We say the assignment *satisfies* ϕ . The *satisfiability problem* is to test whether a Boolean formula is satisfiable. Let

 $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}.$

Now we state the Cook–Levin theorem, which links the complexity of the *SAT* problem to the complexities of all problems in NP.

A **Boolean formula** is an expression involving Boolean variables and operations. For example,

$$\phi = (\overline{x} \wedge y) \lor (x \wedge \overline{z})$$

is a Boolean formula. A Boolean formula is *satisfiable* if some assignment of 0s and 1s to the variables makes the formula evaluate to 1. The preceding formula is satisfiable because the assignment x = 0, y = 1, and z = 0 makes ϕ evaluate to 1. We say the assignment *satisfies* ϕ . The *satisfiability problem* is to test whether a Boolean formula is satisfiable. Let

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}.$

Now we state the Cook–Levin theorem, which links the complexity of the *SAT* problem to the complexities of all problems in NP.

A **Boolean formula** is an expression involving Boolean variables and operations. For example,

$$\phi = (\overline{x} \wedge y) \lor (x \wedge \overline{z})$$

is a Boolean formula. A Boolean formula is *satisfiable* if some assignment of 0s and 1s to the variables makes the formula evaluate to 1. The preceding formula is satisfiable because the assignment x = 0, y = 1, and z = 0 makes ϕ evaluate to 1. We say the assignment *satisfies* ϕ . The *satisfiability problem* is to test whether a Boolean formula is satisfiable. Let

 $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}.$

Now we state the Cook–Levin theorem, which links the complexity of the *SAT* problem to the complexities of all problems in NP.

THEOREM 7.27

Cook-Levin theorem $SAT \in P \text{ iff } P = NP.$

Reducibility

DEFINITION 7.28

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *polynomial time computable function* if some polynomial time Turing machine M exists that halts with just f(w) on its tape, when started on any input w.

DEFINITION 7.29

Language A is polynomial time mapping reducible,¹ or simply polynomial time reducible, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the *polynomial time reduction* of A to B.

Poly-lime Reductbility

FIGURE 7.30 Polynomial time function f reducing A to B

Poly-lime Reducibility

THEOREM 7.31 If $A \leq_P B$ and $B \in P$, then $A \in P$.

PROOF Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B. We describe a polynomial time algorithm N deciding A as follows.

- N = "On input w:
 - 1. Compute f(w).
 - **2.** Run M on input f(w) and output whatever M outputs."

We have $w \in A$ whenever $f(w) \in B$ because f is a reduction from A to B. Thus M accepts f(w) whenever $w \in A$. Moreover, N runs in polynomial time because each of its two stages runs in polynomial time. Note that stage 2 runs in polynomial time because the composition of two polynomials is a polynomial.

NPCOMPLERCESS

DEFINITION 7.34

A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B.

THEOREM 7.35

If B is NP-complete and $B \in P$, then P = NP.

PROOF This theorem follows directly from the definition of polynomial time reducibility.

NPCOMPLELCMESS

THEOREM 7.36

If B is NP-complete and $B \leq_{P} C$ for C in NP, then C is NP-complete.

PROOF We already know that C is in NP, so we must show that every A in NP is polynomial time reducible to C. Because B is NP-complete, every language in NP is polynomial time reducible to B, and B in turn is polynomial time reducible to C. Polynomial time reductions compose; that is, if A is polynomial time reducible to B and B is polynomial time reducible to C, then A is polynomial time reducible to C. Hence every language in NP is polynomial time reducible to C.

cook-Levin Theorem

ACOTCIM

THEOREM 7.37

SAT is NP-complete.²

This theorem restates Theorem 7.27, the Cook-Levin theorem, in another form.

PROOF First, we show that *SAT* is in NP. A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ .

CORLEVIN ME COTEMA

PROOF First, we show that SAT is in NP. A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ .

Next, we take any language A in NP and show that A is polynomial time reducible to SAT. Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k. (For convenience we actually assume that N runs in time $n^k - 3$, but only those readers interested in details should worry about this minor point.) The following notion helps to describe the reduction.

CORLEVIN

PROOF First, we show that SAT is in NP. A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ .

Next, we take any language A in NP and show that A is polynomial time reducible to SAT. Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k. (For convenience we actually assume that N runs in time $n^k - 3$, but only those readers interested in details should worry about this minor point.) The following notion helps to describe the reduction.

"any language *A provably* in NP".

A *tableau* for N on w is an $n^k \times n^k$ table whose rows are the configurations of a branch of the computation of N on input w, as shown in the following figure.

FIGURE **7.38** A tableau is an $n^k \times n^k$ table of configurations

CORLEVIN

Every accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for Non w exists.

Every accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for Non w exists.

Now we get to the description of the polynomial time reduction f from A to SAT. On input w, the reduction produces a formula ϕ .

Every accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for Non w exists.

Now we get to the description of the polynomial time reduction f from A to SAT. On input w, the reduction produces a formula ϕ .

Geell U Gstart U

gaccept U gmove

turning variable $x_{i,j,s}$ on corresponds to placing symbol s in cell[i, j]. The first thing we must guarantee in order to obtain a correspondence between an assignment and a tableau is that the assignment turns on exactly one variable for each cell. Formula ϕ_{cell} ensures this requirement by expressing it in terms of Boolean operations:

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right]$$

turning variable $x_{i,j,s}$ on corresponds to placing symbol s in cell[i, j]. The first thing we must guarantee in order to obtain a correspondence between an assignment and a tableau is that the assignment turns on exactly one variable for each cell. Formula ϕ_{cell} ensures this requirement by expressing it in terms of Boolean operations:

$$\phi_{\text{cell}} = \bigwedge_{1 \le i,j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right]$$

 $C = Q \cup \Gamma \cup \{\#\}.$

CORLEVIN Theorem: Vcell

The symbols \land and \lor stand for iterated AND and OR. For example, the expression in the preceding formula

$$\bigvee_{s \in C} x_{i,j,s}$$

is shorthand for

$$x_{i,j,s_1} \vee x_{i,j,s_2} \vee \cdots \vee x_{i,j,s_l}$$

where $C = \{s_1, s_2, \ldots, s_l\}$. Hence ϕ_{cell} is actually a large expression that contains a fragment for each cell in the tableau because *i* and *j* range from 1 to n^k .

CORLEVIN Theorem: Østart

$$\begin{split} \phi_{\text{start}} &= x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ & x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ & x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \,. \end{split}$$

CORLEVIN Theorem: Østart

$$\begin{split} \phi_{\text{start}} &= x_{1,1} \# \wedge x_{1,2,q_0} \wedge \\ & x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ & x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \,. \end{split}$$

CORLEVIN Theorem: Østart

$$\begin{split} \phi_{\text{start}} &= x_{1,1} \# \wedge x_{1,2} q_0 \wedge \\ & x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ & x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \,. \end{split}$$

CORLEVIN Theorem: Østart

$$\begin{split} \phi_{\text{start}} &= x_{1,1} \not \# \wedge x_{1,2} \not q_0 \wedge \\ & x_{1,3} \not w_1 \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ & x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k, \#} \,. \end{split}$$
CORLEVIN Theorem: Østart

$$\phi_{\text{start}} = x_{1,1} \# \wedge x_{1,2} q_0 \wedge x_{1,3} \# \wedge x_{1,4} \# \wedge x_{1,4} \# \wedge x_{1,n+2,w_n} \wedge x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \wedge$$

CORLEVIN Theorem: Østart

$$\phi_{\text{start}} = x_{1,1} \# \wedge x_{1,2} q_0 \wedge x_{1,3} \# \wedge x_{1,4} \# \wedge x_{1,4} \# \wedge x_{1,n+2} \# \wedge x_{1,n+3} \dots \wedge x_{1,n^k-1, \sqcup} \wedge x_{1,n^k, \#} \wedge x_$$

CORLEVIN Theorem: Østart

$$\phi_{\text{start}} = x_{1,1} \# \wedge x_{1,2} q_0 \wedge x_{1,3} \# \wedge x_{1,4} \# \wedge x_{1,4} \# \wedge x_{1,n+2} \# \wedge x_{1,n+2} \# \wedge x_{1,n+3} \oplus \wedge x_{1,n^k-1, \sqcup} \wedge x_{1,n^k, \#} \wedge x_{$$

CORLEVIN Theorem: Østart

$$\phi_{\text{start}} = x_{1,1} \# \wedge x_{1,2} q_0 \wedge x_{1,3} \# \wedge x_{1,4} \# \wedge x_{1,4} \# \wedge x_{1,n+2} \# \wedge x_{1,n+3} \oplus \dots \wedge x_{1,n^k-1} \oplus \wedge x_{1,n^k,\#} \wedge x_{$$

CORLEVIN Theorem: Østart

$$\phi_{\text{start}} = x_{1,1} \# \wedge x_{1,2} q_0 \wedge x_{1,3} \# \wedge x_{1,4} \# \wedge x_{1,4} \# \wedge x_{1,n+2} \# \wedge x_{1,n+3} \sqcup \wedge x_{1,n^k} \to x_{1,n^k} \# \wedge x_{1,n^k}$$

Formula ϕ_{accept} guarantees that an accepting configuration occurs in the tableau. It ensures that q_{accept} , the symbol for the accept state, appears in one of the cells of the tableau, by stipulating that one of the corresponding variables is on:

$$\phi_{\text{accept}} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{\text{accept}}}$$

window CORLEVIN Theorem: Amove

#

#

(h)	a	q_1	Ъ
(0)	а	а	q_2

(c)	а	а	$\overline{q_1}$
	a	a	b

(d)	
• •	

b a b a

(e)	a	b	a
(c)	а	b	q_2

(f) b b b c b b

FIGURE 7.39 Examples of legal windows

FIGURE 7.40 Examples of illegal windows

(b)
$$\begin{array}{c|c} \mathbf{a} & q_1 & \mathbf{b} \\ \hline q_1 & \mathbf{a} & \mathbf{a} \end{array}$$

 $\delta(q_1,b) = (q_1,c,L)$

FIGURE 7.40 Examples of illegal windows

CLAIM 7.41

If the top row of the table is the start configuration and every window in the table is legal, each row of the table is a configuration that legally follows the preceding one.

CORLEVIN Theorem: gmove

Now we return to the construction of ϕ_{move} . It stipulates that all the windows in the tableau are legal. Each window contains six cells, which may be set in a fixed number of ways to yield a legal window. Formula ϕ_{move} says that the settings of those six cells must be one of these ways, or

$$\phi_{\text{move}} = \bigwedge_{1 < i \le n^k, \ 1 < j < n^k} (\text{the } (i, j) \text{ window is legal})$$

CORLEVIN Theorem: emove

We replace the text "the (i, j) window is legal" in this formula with the following formula. We write the contents of six cells of a window as a_1, \ldots, a_6 .

$$\bigvee_{a_1,\ldots,a_6} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

Now we get to the description of the polynomial time reduction f from A to SAT. On input w, the reduction produces a formula ϕ .

Now we get to the description of the polynomial time reduction f from A to SAT. On input w, the reduction produces a formula ϕ .

NP-Complete Problems

SSAT LS NP-COMPLELE

literal is a Boolean variable or a negated Boolean variable, as in x or \overline{x} . A *clause* is several literals connected with \lor s, as in $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4)$. A Boolean formula is in *conjunctive normal form*, called a *cnf-formula*, if it comprises several clauses connected with \land s, as in

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6}).$$

It is a *3cnf-formula* if all the clauses have three literals, as in

 $(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee x_5 \vee x_6).$

Let $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$. In a satisfiable cnf-formula, each clause must contain at least one literal that is assigned 1.

SSAT is NPCOMPLete

COROLLARY 7.42 *3SAT* is NP-complete.

PROOF Obviously 3SAT is in NP, so we only need to prove that all languages in NP reduce to 3SAT in polynomial time. One way to do so is by showing that SAT polynomial time reduces to 3SAT. Instead, we modify the proof of Theorem 7.37 so that it directly produces a formula in conjunctive normal form with three literals per clause.

COCHELEVIN

The Core MA

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right].$$

$$\begin{split} \phi_{\text{start}} &= x_{1,1,\text{\#}} \wedge x_{1,2,q_0} \wedge \\ & x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ & x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\text{\#}} \,. \end{split}$$

$$\phi_{\text{accept}} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{\text{accept}}} \;.$$

39AT ES NPCOMPLEE

SSAT ES NPCOMPLELE

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right]$$

39AT ES NPCOMPLEE

SSAT ES NPCOMPLEE

$$\begin{split} \phi_{\text{start}} &= x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ & x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ & x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \,. \end{split}$$

39AT ES NPCOMPLEE

SSAT ES NPCOMPLELE

$$\phi_{ ext{accept}} = igvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}$$
 .

39AT ES NPCOMPLEE

SSAT ES NPCOMPLEE

$$\phi_{\text{move}} = \bigwedge_{1 < i \le n^k, \ 1 < j < n^k} (\text{the } (i, j) \text{ window is legal})$$

$$\phi_{\text{move}} = \bigwedge_{1 < i \le n^k, \ 1 < j < n^k} (\text{the } (i, j) \text{ window is legal})$$

$$\bigvee_{\substack{a_1,\ldots,a_6\\\text{is a legal window}}} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

$$SSAT is$$

$$NP-Complete$$

$$\phi_{move} = \bigwedge_{1 < i \le n^{k}, \ 1 < j < n^{k}} (\text{the } (i, j) \text{ window is legal})$$

35AT is NP-Complete

 $\bigvee (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6})$ $a_1, ..., a_6$ is a legal window

SSAT LS NPCOMPLEE

$$\bigvee_{\substack{a_1,\ldots,a_6\\\text{is a legal window}}} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

•
$$P \lor (Q \land R)$$
 equals $(P \lor Q) \land (P \lor R)$.

SSAT ES NP-Complete

Now that we have written the formula in cnf, we convert it to one with three literals per clause. In each clause that currently has one or two literals, we replicate one of the literals until the total number is three. In each clause that has more than three literals, we split it into several clauses and add additional variables to preserve the satisfiability or nonsatisfiability of the original.

SSAT ES NPCOMPLECE

For example, we replace clause $(a_1 \lor a_2 \lor a_3 \lor a_4)$, wherein each a_i is a literal, with the two-clause expression $(a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4)$, wherein z is a new variable. If some setting of the a_i 's satisfies the original clause, we can find some setting of z so that the two new clauses are satisfied. In general, if the clause contains l literals,

$$(a_1 \lor a_2 \lor \cdots \lor a_l),$$

we can replace it with the l - 2 clauses

 $(a_1 \lor a_2 \lor z_1) \land (\overline{z_1} \lor a_3 \lor z_2) \land (\overline{z_2} \lor a_4 \lor z_3) \land \cdots \land (\overline{z_{l-3}} \lor a_{l-1} \lor a_l).$

We may easily verify that the new formula is satisfiable iff the original formula was, so the proof is complete.

CLIQUE is NP-Complete

THEOREM 7.32

3SAT is polynomial time reducible to CLIQUE.

PROOF IDEA The polynomial time reduction f that we demonstrate from *3SAT* to *CLIQUE* converts formulas to graphs. In the constructed graphs, cliques of a specified size correspond to satisfying assignments of the formula. Structures within the graph are designed to mimic the behavior of the variables and clauses.

CLIQUE IS NPCCOMPLEE

PROOF Let ϕ be a formula with k clauses such as

 $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k).$

The reduction f generates the string $\langle G, k \rangle$, where G is an undirected graph defined as follows.

The nodes in G are organized into k groups of three nodes each called the *triples*, t_1, \ldots, t_k . Each triple corresponds to one of the clauses in ϕ , and each node in a triple corresponds to a literal in the associated clause. Label each node of G with its corresponding literal in ϕ .

The edges of G connect all but two types of pairs of nodes in G. No edge is present between nodes in the same triple and no edge is present between two nodes with contradictory labels, as in x_2 and $\overline{x_2}$. The following figure illustrates this construction when $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$.
CLIQUE is NP-Complete

FIGURE 7.33 The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

Suppose that ϕ has a satisfying assignment. In that satisfying assignment, at least one literal is true in every clause. In each triple of G, we select one node corresponding to a true literal in the satisfying assignment. If more than one literal is true in a particular clause, we choose one of the true literals arbitrarily. The nodes just selected form a k-clique. The number of nodes selected is k, because we chose one for each of the k triples. Each pair of selected nodes is joined by an edge because no pair fits one of the exceptions described previously. They could not be from the same triple because we selected only one node per triple. They could not have contradictory labels because the associated literals were both true in the satisfying assignment. Therefore G contains a k-clique.

CLIQUE \in NP-Complete: (C, k) ECLIQUE -> (ϕ) E3SAT

Suppose that G has a k-clique. No two of the clique's nodes occur in the same triple because nodes in the same triple aren't connected by edges. Therefore each of the k triples contains exactly one of the k clique nodes. We assign truth values to the variables of ϕ so that each literal labeling a clique node is made true. Doing so is always possible because two nodes labeled in a contradictory way are not connected by an edge and hence both can't be in the clique. This assignment to the variables satisfies ϕ because each triple contains a clique node and hence each clause contains a literal that is assigned TRUE. Therefore ϕ is satisfiable.

Verlex-Cover is NP-Complete

THE VERTEX COVER PROBLEM

If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size:

 $VERTEX-COVER = \{ \langle G, k \rangle | G \text{ is an undirected graph that} \\ \text{has a } k \text{-node vertex cover} \}.$

Verlex-Cover is NP-Complete

THE VERTEX COVER PROBLEM

If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size:

 $VERTEX-COVER = \{ \langle G, k \rangle | G \text{ is an undirected graph that} \\ \text{has a } k \text{-node vertex cover} \}.$

THEOREM 7.44

VERTEX-COVER is NP-complete.

Verlex-Cover is NP-Complete

PROOF Here are the details of a reduction from 3SAT to VERTEX-COVER that operates in polynomial time. The reduction maps a Boolean formula ϕ to a graph G and a value k. For each variable x in ϕ , we produce an edge connecting two nodes. We label the two nodes in this gadget x and \overline{x} . Setting x to be TRUE corresponds to selecting the left node for the vertex cover, whereas FALSE corresponds to the right node.

Verlex Cover is NP-COMPLete

The gadgets for the clauses are a bit more complex. Each clause gadget is a triple of three nodes that are labeled with the three literals of the clause. These three nodes are connected to each other and to the nodes in the variables gadgets that have the identical labels. Thus the total number of nodes that appear in G is 2m + 3l, where ϕ has m variables and l clauses. Let k be m + 2l.

For example, if $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$, the reduction produces $\langle G, k \rangle$ from ϕ , where k = 8 and G takes the form shown in the following figure.

FIGURE 7.45 The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

Verlex-Cover E NP-Complete: (\$)EBSAT -> (C,k)EV-C

To prove that this reduction works, we need to show that ϕ is satisfiable if and only if G has a vertex cover with k nodes. We start with a satisfying assignment. We first put the nodes of the variable gadgets that correspond to the true literals in the assignment into the vertex cover. Then, we select one true literal in every clause and put the remaining two nodes from every clause gadget into the vertex cover. Now, we have a total of k nodes. They cover all edges because every variable gadget edge is clearly covered, all three edges within every clause gadget are covered, and all edges between variable and clause gadgets are covered. Hence G has a vertex cover with k nodes.

Second, if G has a vertex cover with k nodes, we show that ϕ is satisfiable by constructing the satisfying assignment. The vertex cover must contain one node in each variable gadget and two in every clause gadget in order to cover the edges of the variable gadgets and the three edges within the clause gadgets. That accounts for all the nodes, so none are left over. We take the nodes of the variable gadgets that are in the vertex cover and assign the corresponding literals TRUE. That assignment satisfies ϕ because each of the three edges connecting the variable gadgets with each clause gadget is covered and only two nodes of the clause gadget are in the vertex cover. Therefore one of the edges must be covered by a node from a variable gadget and so that assignment satisfies the corresponding clause.

PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.

- PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them
 may be solved within reasonable (Poly)
 amount of time, then all of them can.

DEFINITION 8.1

Let M be a deterministic Turing machine that halts on all inputs. The *space complexity* of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of tape cells that M scans on any input of length n. If the space complexity of M is f(n), we also say that M runs in space f(n).

If M is a nondeterministic Turing machine wherein all branches halt on all inputs, we define its space complexity f(n) to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

Space Complexily DEFINITION 8.2

Let $f: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. The space complexity classes, SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

$$\begin{split} \mathrm{SPACE}(f(n)) &= \{L \mid L \text{ is a language decided by an } O(f(n)) \text{ space} \\ & \text{deterministic Turing machine} \}. \\ \mathrm{NSPACE}(f(n)) &= \{L \mid L \text{ is a language decided by an } O(f(n)) \text{ space} \\ & \text{nondeterministic Turing machine} \}. \end{split}$$

THEOREM 8.5

Savitch's theorem For any¹ function $f: \mathcal{N} \longrightarrow \mathcal{R}^+$, where $f(n) \ge n$, NSPACE $(f(n)) \subseteq$ SPACE $(f^2(n))$.

DEFINITION 8.6

PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

$$PSPACE = \bigcup_{k} SPACE(n^k).$$

We define NPSPACE, the nondeterministic counterpart to PSPACE, in terms of the NSPACE classes. However, PSPACE = NPSPACE by virtue of Savitch's theorem, because the square of any polynomial is still a polynomial.

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME = \bigcup_k TIME(2^{n^k})$

Space/Time Complexily Decidable Languages EXPTime complete PSpace NP D P#EXPTime

Space Complexity

DEFINITION 8.8

A language B is **PSPACE-complete** if it satisfies two conditions:

- **1.** *B* is in PSPACE, and
- **2.** every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

Pspace Completeness

rspace completeness

@ Geography Game:

Given a set of country names: Aruba, Cuba, Canada, Equador, France, Italy, Japan, Korea, Nigeria, Russia, Vietnam, Yemen.

Pspace Completeness

@ Geography Game:

Given a set of country names: Aruba, Cuba, Canada, Equador, France, Italy, Japan, Korea, Nigeria, Russia, Vietnam, Yemen.

A two player game: One player chooses a name and crosses it out. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Generalized Greography

Greneralized Greography

Given an arbitrary set of names: w1, ..., wn.

Generalized Geography

- Given an arbitrary set of names:
 w1, ..., wn.
- Is there a winning strategy for the first player to the previous game?

Computer Science

FIND efficient solutions to many problems.
 (Algorithms and Data Structures)

- FIND efficient solutions to many problems.
 (Algorithms and Data Structures)
- PROVE that certain problems are NOT
 computable within a certain time or space.

- FIND efficient solutions to many problems.
 (Algorithms and Data Structures)
- PROVE that certain problems are NOT
 computable within a certain time or space.
- Consider new models of computation.
 (Such as a Quantum Computer)

COMP-330 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau

Lec. 22-23 : Introduction to Complexity