COMP-330
 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Lec. 22-23 :

Introduction to Complexity

Trackable Problems

Not all problems were born equal...

Not all problems were born equal...

Is it possible to paint a colour on each region of a map so that no neighbours are of the same colour?

Obviously, yes, if you can use as many colours as you like...

1-colouring problem

Only two maps are 1-colourable.

2-colouring problem

जnixin NivN

Very few maps are 2-colourable.

2-colouring problem

very few maps are 2-colourable.

Most maps are not 2-colourable.

Trackable Problems (P)

Trackable Problems

 (P)- 2-colorability of maps.

Trackable Problems

$$
(P)
$$

- 2-colorability of maps.
- Primaliky testing. (but probably not factoring)

Tractable Problems (P)

- 2-colorability of maps.
- Primaliky testing. (but probably not factoring)
- Solving N×N×N Rubik's cube.

Trackable Problems
(P)

- 2-colorability of maps.
- Primaliky besting. (but probably not factoring)
- Solving $N \times N \times N$ Rubik's cube.
- Finding a word in a dictionary.

Trackable Problems
(P)

- 2-colorability of maps.
- Primaliky besting. (but probably not factoring)
- Solving $N \times N \times N$ Rubik's cube.
- Finding a word in a dictionary.
- Sorting elements...

Trackable Problems (P)

Trackable Problems

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.

Trackable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.
- More formally, there exists a TM to compute solutions to the problem and there exists a polynomial Q such that the number of steps on each input x before halting is no more than $Q(|x|)$.

Trackable Problems (P)

Trackable Problems

$$
(P)
$$

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.

Trackable Problems

$$
(P)
$$

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.

Trackable Problems
(P)

- Fortunately, many practical problems are tractable. The name P stands for Polynomial-Time computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

Trackable Problems (P)

Trackable Problems

$$
(P)
$$

- The name P stands for Polynomial-Time computable.

Tractable Problems (P)

- The name P stands for Polynomial-Time computable.
- Q: Why choose this level of granularity? Why not choose linear-kime for instance?

Tractable Problems
(P)

- The name P stands for Polynomial-Time computable.
- Q: Why choose this level of granularity? Why not choose linear-time for instance?
- A: because P is the same for all types of Turing machines and any reasonable model. This is not true of linear-time for instance...

Trackable Problems

THEOREM 7.8

Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time multitape Turing machine has an equivalent $O\left(t^{2}(n)\right)$ time single-tape Turing machine.

Complexily
 Theor Decidable
 Languages

Complexily
 Theor Decidable
 Languages

NP

Complexily Theor Decidable
 Languages

NP

Complexily Theor Decidable
 Languages

$P=N P ?$

Some maps are 3 -colourable.

Some maps are not 3 -colourable.

All maps are 4 -colourable.

4-colouring problem

All maps are 4 -colourable.

$$
\begin{aligned}
& \text { K-colouring of } \\
& \text { Maps (planar graphs) }
\end{aligned}
$$

K-colouring of Maps (planar graphs)

- $K=1$ only the maps with zero or one region are 1-colourable.

K-colouring of Maps (planar graphs)

- K=1 only the maps with zero or one region are 1-colourable.
- $K=2$ easy to decide. Impossible as soon as 3 regions touch each other.

K-colouring of Maps (planar graphs)

- K=1 only the maps with zero or one region are 1-colourable.
- K=2 easy lo decide. Impossible as soon as 3 regions bouch each ocher.
- $K=3$ No known efficient algorithm ko decide. It is easy lo verify a solution.

K-colouring of
Maps (planar graphs)

- $K=1$ only the maps with zero or one region are 1-colourable.
- $K=2$ easy to decide. Impossible as soon as 3 regions touch each other.
- $K=3$ No known efficient algorithm to decide. It is easy to verify a solution.
- K ≥ 4 all maps are 4 -colourable. (long proof) Does not imply easy to find a 4-colouring.

3-colouring of Maps

3-colouring of Maps

- Seems hard to solve in general,

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given, (is in NP: guess a solution and verify il)

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given, (is in NP: guess a solution and verify il)
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to ALL problems in NP!

Examples of NPComplele Problems

Examples of NPComplete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?

Examples of NPComplete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluace lo krue?
- Travelling Salesman: given a sel of cilies and diskances bekween them, what is the shortest rouke lo visil each cily once.

Examples of NPComplete Problems

- SAT: given a boolean formula, is chere an assignment of the variables making the formula evaluate to krue?
- Travelling Salesman: given a sel of cilies and distances bekween them, what is the shortest route lo visil each cily once.
- KnapSack: given items with various weights, is chere of subsel of chem of cotal weight K.

NP-Complete Problems

NP-Complete Problems

- Many practical problems are NP-complete.

NP-Complete
Problems

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.

NP-Complete
Problems

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.

NP-Complete Problems

- Many practical problems are NP-complete.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.
- Some books list hundreds of such problems.

NP-Complete Problems

COMPUTERS AND INTRACTABILITY

 A Guide to the Theory of NP-CompletenessMichael R. Garey / David S. Johnson

NP-Complete Problems

Appendix: A List of NP-Complete Problems 187
A1 Graph Theory 190
A1.1 Covering and Partitioning 190
A1.2 Subgraphs and Supergraphs 194
A1.3 Vertex Ordering 199
A1.4 Iso- and Other Morphisms 202
A1.5 Miscellaneous 203
A2 Network Design 206
A2.1 Spanning Trees 206
A2.2 Cuts and Connectivity 209
A2.3 Routing Problems 211
A2.4 Flow Problems 214
A2.5 Miscellaneous 218
A3 Sets and Partitions 221
A3.1 Covering, Hitting, and Splitting 221
A3.2 Weighted Set Problems 223
A4 Storage and Retrieval 226
A4.1 Data Storage 226
A4.2 Compression and Representation 228
A4.3 Database Problems 232

NP-Complete Problems

Appendix: A List of NP-Complete Problems 187
A1 Graph Theory 190
A1.1 Covering and Partitioning 190
A1.2 Subgraphs and Supergraphs 194
A1.3 Vertex Ordering 199
A1.4 Iso- and Other Morphisms 202
A1.5 Miscellaneous 203
A2 Network Design 206
A2.1 Spanning Trees 206
A2.2 Cuts and Connectivity 209
A2.3 Routing Problems 211
A2.4 Flow Problems 214
A2.5 Miscellaneous 218
A3 Sets and Partitions 221
A3.1 Covering, Hitting, and Splitting 221
A3.2 Weighted Set Problems 223
A4 Storage and Retrieval 226
A4.1 Data Storage 226
A4.2 Compression and Representation 228
A4.3 Database Problems 232

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness
Michsel R. Garey / David S. Johnson

NP-Complete Problems

A5 Sequencing and Scheduling 236
A5.1 Sequencing on One Processor 236
A5.2 Multiprocessor Scheduling 238
A5.3 Shop Scheduling 241
A5.4 Miscellaneous 243
A6 Mathematical Programming 245
A7 Algebra and Number Theory 249
A7.1 Divisibility Problems 249
A7.2 Solvability of Equations 250
A7:3 Miscellaneous 252
A8 Games and Puzzles 254
A9 Logic 259
A9.1 Propositional Logic 259
A9.2 Miscellaneous 261
A10 Automata and Language Theory 265
A10.1 Automata Theory 265
A10.2 Formal Languages 267
A11 Program Optimization 272
A11.1 Code Generation 272
A11.2 Programs and Schemes 275
A12 Miscellaneous 279
A13 Open Problems 285

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness
Michsel R. Garey / David S. Johnson

NP-Complete Problems

A5 Sequencing and Scheduling 236
A5.1 Sequencing on One Processor 236
A5.2 Multiprocessor Scheduling 238
A5.3 Shop Scheduling 241
A5.4 Miscellaneous 243
A6 Mathematical Programming 245
A7 Algebra and Number Theory 249
A7.1 Divisibility Problems 249
A7.2 Solvability of Equations 250
A7:3 Miscellaneous 252
A8 Games and Puzzles 254
A9 Logic 259
A9.1 Propositional Logic 259
A9.2 Miscellaneous 261
A10 Automata and Language Theory 265
A10.1 Automata Theory 265
A10.2 Formal Languages 267
A11 Program Optimization 272
A11.1 Code Generation 272
A11.2 Programs and Schemes 275
A12 Miscellaneous 279
A13 Open Problems 285

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness
Michsel R. Garey / David S. Johnson

100 pages 1979

Complexily
 Theor Decidable
 Languages

Complexily
 Theor Decidable
 Languages

NP

Complexily Theor Decidable
 Languages

NP

Complexily Theor Decidable
 Languages

$P=N P ?$

Complexily Theor Decidable
 Languages

NP
$P=N P ?$

PVSNP

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^{+}$be a function. Define the time complexity class, $\operatorname{TIME}(t(n))$, to be the collection of all languages that are decidable by an $O(t(n))$ time Turing machine.

P Vs NP

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^{+}$be a function. Define the time complexity class, $\operatorname{TIME}(\boldsymbol{t}(\boldsymbol{n}))$, to be the collection of all languages that are decidable by an $O(t(n))$ time Turing machine.

DEFINITION 7.12

\mathbf{P} is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$
\mathrm{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

PVS NP

DEFINITION 7.9

Let N be a nondeterministic Turing machine that is a decider. The running time of N is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n, as shown in the following figure.

P VS NP

PVSNP

DEFINITION 7.21

$\operatorname{NTIME}(t(n))=\{L \mid L$ is a language decided by a $O(t(n))$ time nondeterministic Turing machine $\}$.

COROLLARY $\mathbf{7 . 2 2}$

$\mathrm{NP}=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right)$.

PVSNP

THEOREM 7.11

Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time nondeterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic singletape Turing machine.

PVSNP

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge. A \boldsymbol{k}-clique is a clique that contains k nodes. Figure 7.23 illustrates a graph having a 5-clique

PVS NP

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge. A \boldsymbol{k}-clique is a clique that contains k nodes. Figure 7.23 illustrates a graph having a 5 -clique

FIGURE 7.23

A graph with a 5-clique

PVSNP

The clique problem is to determine whether a graph contains a clique of a specified size. Let

$$
\text { CLIQUE }=\{\langle G, k\rangle \mid G \text { is an undirected graph with a } k \text {-clique }\} .
$$

COMPLETENESS

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,\left[\begin{array}{c}\text { © } \\ (x, w) \text { accepts }]\end{array}\right.$

COMPLETENESS

$\mathrm{x} \in \mathrm{L}$

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,[\bar{\omega}(x, w)$ accepts $]$

COMPLETENESS

$\mathrm{x} \in \mathrm{L}$

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,\left[\begin{array}{c}\mathbf{\omega} \\ (x, w) \text { accepts }] \\ \hline\end{array}\right.$

SOUNDNESS

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,[\bar{\omega}(x, w)$ accepts $]$

 and $\forall x \notin L, \forall w,[\overline{\mathbf{U}}(x, w)$ rejects]

SOUNDNESS

X $\notin \mathrm{L}$

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,[\bar{\sim}(x, w)$ accepts $]$

 and $\forall x \notin L, \forall w,[\overline{\mathbf{U}}(x, w)$ rejects]

SOUNDNESS

X $\notin \mathrm{L}$

$\exists \overline{\mathbf{\omega}}, \forall x \in L, \exists w,[\bar{\sim}(x, w)$ accepts $]$

 and $\forall x \notin L, \forall w,[\overline{\mathbf{U}}(x, w)$ rejects]

CLIQUE is in NP.

PROOF IDEA The clique is the certificate.
PROOF The following is a verifier V for CLIQUE.
$V=$ "On input $\langle\langle G, k\rangle, c\rangle$:

1. Test whether c is a set of k nodes in G
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF If you prefer to think of NP in terms of nondeterministic polynomial time Turing machines, you may prove this theorem by giving one that decides CLIQUE. Observe the similarity between the two proofs.
$N=$ "On input $\langle G, k\rangle$, where G is a graph:

1. Nondeterministically select a subset c of k nodes of G.
2. Test whether G contains all edges connecting nodes in c.
3. If yes, accept; otherwise, reject."

A Boolean formula is an expression involving Boolean variables and operations. For example,

$$
\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})
$$

is a Boolean formula. A Boolean formula is satisfiable if some assignment of 0s and 1 s to the variables makes the formula evaluate to 1 . The preceding formula is satisfiable because the assignment $x=0, y=1$, and $z=0$ makes ϕ evaluate to 1 . We say the assignment satisfies ϕ. The satisfiability problem is to test whether a Boolean formula is satisfiable. Let

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\} .
$$

Now we state the Cook-Levin theorem, which links the complexity of the $S A T$ problem to the complexities of all problems in NP.

A

A Boolean formula is an expression involving Boolean variables and operations. For example,

$$
\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})
$$

is a Boolean formula. A Boolean formula is satisfiable if some assignment of 0s and 1 s to the variables makes the formula evaluate to 1 . The preceding formula is satisfiable because the assignment $x=0, y=1$, and $z=0$ makes ϕ evaluate to 1 . We say the assignment satisfies ϕ. The satisfiability problem is to test whether a Boolean formula is satisfiable. Let

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\} .
$$

Now we state the Cook-Levin theorem, which links the complexity of the $S A T$ problem to the complexities of all problems in NP.

A Boolean formula is an expression involving Boolean variables and operations. For example,

$$
\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})
$$

is a Boolean formula. A Boolean formula is satisfiable if some assignment of 0s and 1 s to the variables makes the formula evaluate to 1 . The preceding formula is satisfiable because the assignment $x=0, y=1$, and $z=0$ makes ϕ evaluate to 1 . We say the assignment satisfies ϕ. The satisfiability problem is to test whether a Boolean formula is satisfiable. Let

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\} .
$$

Now we state the Cook-Levin theorem, which links the complexity of the $S A T$ problem to the complexities of all problems in NP.

THEOREM 7.27
Cook-Levin theorem $\quad S A T \in \mathrm{P}$ iff $\mathrm{P}=\mathrm{NP}$.

Poly-kime Reducibiliky

DEFINITION 7.28

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a polynomial time computable function if some polynomial time Turing machine M exists that halts with just $f(w)$ on its tape, when started on any input w.

Poly-time educibiliky

DEFINITION 7.29

Language A is polynomial time mapping reducible, ${ }^{1}$ or simply polynomial time reducible, to language B, written $A \leq_{\mathrm{P}} B$, if a polynomial time computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ exists, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B .
$$

The function f is called the polynomial time reduction of A to B.

Poly-time Reducibility

FIGURE 7.30
Polynomial time function f reducing A to B

Poly-time Reducibility

THEOREM 7.31

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

PROOF Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B. We describe a polynomial time algorithm N deciding A as follows.
$N=$ "On input $w:$

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs."

We have $w \in A$ whenever $f(w) \in B$ because f is a reduction from A to B. Thus M accepts $f(w)$ whenever $w \in A$. Moreover, N runs in polynomial time because each of its two stages runs in polynomial time. Note that stage 2 runs in polynomial time because the composition of two polynomials is a polynomial.

NP-compleceness

DEFINITION 7.34

A language B is $N P$-complete if it satisfies two conditions:

1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 7.35

If B is NP-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.
PROOF This theorem follows directly from the definition of polynomial time reducibility.

NP-compleceness

THEOREM 7.36

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.
PROOF We already know that C is in NP, so we must show that every A in NP is polynomial time reducible to C. Because B is NP-complete, every language in NP is polynomial time reducible to B, and B in turn is polynomial time reducible to C. Polynomial time reductions compose; that is, if A is polynomial time reducible to B and B is polynomial time reducible to C, then A is polynomial time reducible to C. Hence every language in NP is polynomial time reducible to C.

Cook-Levin Theorem

THEOREM 7.37

$S A T$ is NP-complete. ${ }^{2}$
This theorem restates Theorem 7.27, the Cook-Levin theorem, in another form.

Cook-Levin Theorem

PROOF First, we show that $S A T$ is in NP. A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ.

Cook-Levin Theorem

PROOF First, we show that $S A T$ is in NP. A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ.

Next, we take any language ${ }^{*} A$ in NP and show that A is polynomial time reducible to $S A T$. Let N be a nondeterministic Turing machine that decides A in n^{k} time for some constant k. (For convenience we actually assume that N runs in time $n^{k}-3$, but only those readers interested in details should worry about this minor point.) The following notion helps to describe the reduction.

Cook-Levin Theorem

PROOF First, we show that $S A T$ is in NP. A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ.

Next, we take any language ${ }^{*} A$ in NP and show that A is polynomial time reducible to $S A T$. Let N be a nondeterministic Turing machine that decides A in n^{k} time for some constant k. (For convenience we actually assume that N runs in time $n^{k}-3$, but only those readers interested in details should worry about this minor point.) The following notion helps to describe the reduction.

[^0]A tableau for N on w is an $n^{k} \times n^{k}$ table whose rows are the configurations of a branch of the computation of N on input w, as shown in the following figure.

FIGURE 7.38

A tableau is an $n^{k} \times n^{k}$ table of configurations

Cook-Levin Theorem

Cook-Levin

 TheoremEvery accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exists.

Cook-Levin

 TheoremEvery accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exists.

Now we get to the description of the polynomial time reduction f from A to $S A T$. On input w, the reduction produces a formula ϕ.

Cook-Levin

 TheoremEvery accepting tableau for N on w corresponds to an accepting computation branch of N on w. Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exists.

Now we get to the description of the polynomial time reduction f from A to $S A T$. On input w, the reduction produces a formula ϕ.

turning variable $x_{i, j, s}$ on corresponds to placing symbol s in $\operatorname{cell}[i, j]$. The first thing we must guarantee in order to obtain a correspondence between an assignment and a tableau is that the assignment turns on exactly one variable for each cell. Formula $\phi_{\text {cell }}$ ensures this requirement by expressing it in terms of Boolean operations:

$$
\phi_{\mathrm{cell}}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in C \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right] .
$$

turning variable $x_{i, j, s}$ on corresponds to placing symbol s in cell $[i, j]$. The first thing we must guarantee in order to obtain a correspondence between an assignment and a tableau is that the assignment turns on exactly one variable for each cell. Formula $\phi_{\text {cell }}$ ensures this requirement by expressing it in terms of Boolean operations:

$$
\phi_{\mathrm{cell}}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in C \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right] .
$$

$C=Q \cup \Gamma \cup\{\#\}$

Cook-Levin

Theorem: $\phi_{\text {cell }}$

The symbols \wedge and \bigvee stand for iterated anD and or. For example, the expression in the preceding formula

$$
\bigvee_{s \in C} x_{i, j, s}
$$

is shorthand for

$$
x_{i, j, s_{1}} \vee x_{i, j, s_{2}} \vee \cdots \vee x_{i, j, s_{l}}
$$

where $C=\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}$. Hence $\phi_{\text {cell }}$ is actually a large expression that contains a fragment for each cell in the tableau because i and j range from 1 to n^{k}.

Cook-Levin

Theorem: $\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1[\#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1[\#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\mathrm{start}}= & x_{1,1[\#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1[\#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook-Levin

Theorem: \$start

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\mathrm{start}}= & x_{1,1[\#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1[\#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3} \wedge \wedge \ldots x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on:

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1[\#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3} \wedge \wedge \wedge x_{1, n^{k}-1, \Delta} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

Cook－Levin

Theorem：$\phi_{\text {start }}$

Formula $\phi_{\text {start }}$ ensures that the first row of the table is the starting configu－ ration of N on w by explicitly stipulating that the corresponding variables are on：

$$
\begin{aligned}
& \phi_{\text {start }}=x_{1,1 \llbracket} \cap x_{1,2} \llbracket q_{0} \wedge \\
& x_{1,3, \omega_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3} \text { 回 } \wedge \ldots \wedge x_{1, n^{k}-1 \text { 包 }} \wedge x_{1, n^{k} \text { 进. }} \text {. }
\end{aligned}
$$

Cook-Levin

Theorem: $\phi_{\text {accept }}$

Formula $\phi_{\text {accept }}$ guarantees that an accepting configuration occurs in the tableau. It ensures that $q_{\text {accept }}$, the symbol for the accept state, appears in one of the cells of the tableau, by stipulating that one of the corresponding variables is on:

$$
\phi_{\text {accept }}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}}
$$

Cook-Levin

Theorem: qmove

(a) | a | q_{1} | b |
| :---: | :---: | :---: |
| q_{2} | a | c |

(b) | a | q_{1} | b |
| :--- | :--- | :--- |
| a | a | q_{2} |

(c) | a | a | q_{1} |
| :--- | :--- | :--- |
| a | a | b |

(d) | $\#$ | b | a |
| :--- | :--- | :--- |
| $\#$ | b | a |

(e) | a | b | a |
| :--- | :--- | :--- |
| a | b | q_{2} |

(f) | b | b | b |
| :--- | :--- | :--- |
| c | b | b |

FIGURE 7.39
Examples of legal windows

Cook-Levin

Theorem: move

(a) | a | b | a |
| :--- | :--- | :--- |
| a | a | a |

(b)

a	q_{1}	b
q_{1}	a	a

(c) | b | q_{1} | b |
| :---: | :---: | :---: |
| q_{2} | b | q_{2} |

Figure $\mathbf{7 . 4 0}$
Examples of illegal windows

Cook-Levin

Theorem: \$move

(a) | a | b | a |
| :--- | :--- | :--- |
| a | a | a |

Figure 7.40

(b) | a | q_{1} | b |
| :---: | :---: | :---: |
| q_{1} | a | a |

(c) | b | q_{1} | b |
| :---: | :---: | :---: |
| q_{2} | b | q_{2} |

$$
\boldsymbol{\delta}\left(q_{1}, b\right)=\left(q_{1}, c, L\right)
$$

Examples of illegal windows

Cook-Levin

Theorem: smove

CLAIM 7.41

If the top row of the table is the start configuration and every window in the table is legal, each row of the table is a configuration that legally follows the preceding one.

Cook-Levin

Theorem: smove

Now we return to the construction of $\phi_{\text {move }}$. It stipulates that all the windows in the tableau are legal. Each window contains six cells, which may be set in a fixed number of ways to yield a legal window. Formula $\phi_{\text {move }}$ says that the settings of those six cells must be one of these ways, or

$$
\phi_{\text {move }}=\bigwedge_{1<i \leq n^{k}, 1<j<n^{k}}(\text { the }(i, j) \text { window is legal })
$$

Cook-Levin

Theorem: smove

We replace the text "the (i, j) window is legal" in this formula with the following formula. We write the contents of six cells of a window as a_{1}, \ldots, a_{6}.

$$
\bigvee_{\substack{a_{1}, \ldots, a_{6} \\ \text { is a legal window }}}\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)
$$

Cook-Levin

 TheoremNow we get to the description of the polynomial time reduction f from A to $S A T$. On input w, the reduction produces a formula ϕ.

Cook-Levin

 TheoremNow we get to the description of the polynomial time reduction f from A to $S A T$. On input w, the reduction produces a formula ϕ.

$\langle\phi\rangle \in S A T$
 iff

N accepls w
wikhin n^{k} sleps.

NP-Complele Problems

3SAT is

NP-Complete

literal is a Boolean variable or a negated Boolean variable, as in x or \bar{x}. A clause is several literals connected with $\vee \mathrm{s}$, as in ($x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}$). A Boolean formula is in conjunctive normal form, called a cnf-formula, if it comprises several clauses connected with $\wedge \mathrm{s}$, as in

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}}\right)
$$

It is a 3cnf-formula if all the clauses have three literals, as in

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}} \vee x_{4}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right)
$$

Let $3 S A T=\{\langle\phi\rangle \mid \phi$ is a satisfiable 3 cnf -formula $\}$. In a satisfiable enf-formula, each clause must contain at least one literal that is assigned 1.

NP-Complele

COROLLARY 7.42

$3 S A T$ is NP-complete.
PROOF Obviously $3 S A T$ is in NP, so we only need to prove that all languages in NP reduce to $3 S A T$ in polynomial time. One way to do so is by showing that $S A T$ polynomial time reduces to $3 S A T$. Instead, we modify the proof of Theorem 7.37 so that it directly produces a formula in conjunctive normal form with three literals per clause.

Cook-Levin Theorem

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

$$
\phi_{\mathrm{accept}}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}}
$$

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

$$
\phi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in C \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right] .
$$

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

$$
\phi_{\text {accept }}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}}
$$

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

NP-Complete

Theorem 7.37 produces a formula that is already almost in conjunctive normal form. Formula $\phi_{\text {cell }}$ is a big AND of subformulas, each of which contains a big OR and a big AND of ORs. Thus $\phi_{\text {cell }}$ is an AND of clauses and so is already in cnf. Formula $\phi_{\text {start }}$ is a big AND of variables. Taking each of these variables to be a clause of size 1 we see that $\phi_{\text {start }}$ is in cnf. Formula $\phi_{\text {accept }}$ is a big OR of variables and is thus a single clause. Formula $\phi_{\text {move }}$ is the only one that isn't already in cnf, but we may easily convert it into a formula that is in cnf as follows.

$$
\phi_{\text {move }}=\bigwedge_{1<i \leq n^{k}, 1<j<n^{k}}(\text { the }(i, j) \text { window is legal })
$$

Cook-Levin Theorem

$$
\phi_{\text {move }}=\bigwedge_{1<i \leq n^{k}, 1<j<n^{k}}(\text { the }(i, j) \text { window is legal })
$$

$\bigvee\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)$ is a legal window

NP-Complele

Abstract

Recall that $\phi_{\text {move }}$ is a big AND of subformulas, each of which is an OR of ANDs that describes all possible legal windows. The distributive laws, as described in Chapter 0 , state that we can replace an OR of ANDs with an equivalent AND of ORs. Doing so may significantly increase the size of each subformula, but it can only increase the total size of $\phi_{\text {move }}$ by a constant factor because the size of each subformula depends only on N. The result is a formula that is in conjunctive normal form.

$$
\begin{aligned}
& \text { 3SAT is } \\
& \phi_{\text {move }}=\bigwedge(\text { the }(i, j) \text { window is legal }) \\
& 1<i \leq n^{k}, 1<j<n^{k}
\end{aligned}
$$

Recall that $\phi_{\text {move }}$ is a big AND of subformulas, each of which is an OR of ANDs that describes all possible legal windows. The distributive laws, as described in Chapter 0 , state that we can replace an OR of ANDs with an equivalent AND of ORs. Doing so may significantly increase the size of each subformula, but it can only increase the total size of $\phi_{\text {move }}$ by a constant factor because the size of each subformula depends only on N. The result is a formula that is in conjunctive normal form.

NP-Complele

Abstract

Recall that $\phi_{\text {move }}$ is a big AND of subformulas, each of which is an OR of ANDs that describes all possible legal windows. The distributive laws, as described in Chapter 0 , state that we can replace an OR of ANDs with an equivalent AND of ORs. Doing so may significantly increase the size of each subformula, but it can only increase the total size of $\phi_{\text {move }}$ by a constant factor because the size of each subformula depends only on N. The result is a formula that is in conjunctive normal form.

3SAT is

NP-Complete

$$
\bigvee_{\substack{a_{1}, \ldots, a_{6} \\ \text { is a legal window }}}\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)
$$

Recall that $\phi_{\text {move }}$ is a big AND of subformulas, each of which is an OR of ANDs that describes all possible legal windows. The distributive laws, as described in Chapter 0 , state that we can replace an OR of ANDs with an equivalent AND of ORs. Doing so may significantly increase the size of each subformula, but it can only increase the total size of $\phi_{\text {move }}$ by a constant factor because the size of each subformula depends only on N. The result is a formula that is in conjunctive normal form.

3SAT is

NP-Complete

$$
\begin{aligned}
& \bigvee_{\substack{a_{1}, \ldots, a_{6} \\
\text { is a legal window }}}\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right) \\
& \bullet P \vee(Q \wedge R) \text { equals }(P \vee Q) \wedge(P \vee R)
\end{aligned}
$$

Recall that $\phi_{\text {move }}$ is a big AND of subformulas, each of which is an OR of ANDs that describes all possible legal windows. The distributive laws, as described in Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of ORs. Doing so may significantly increase the size of each subformula, but it can only increase the total size of $\phi_{\text {move }}$ by a constant factor because the size of each subformula depends only on N. The result is a formula that is in conjunctive normal form.

NP-Complete

Now that we have written the formula in cnf, we convert it to one with three literals per clause. In each clause that currently has one or two literals, we replicate one of the literals until the total number is three. In each clause that has more than three literals, we split it into several clauses and add additional variables to preserve the satisfiability or nonsatisfiability of the original.

NP-Complete

Abstract

For example, we replace clause ($a_{1} \vee a_{2} \vee a_{3} \vee a_{4}$), wherein each a_{i} is a literal, with the two-clause expression $\left(a_{1} \vee a_{2} \vee z\right) \wedge\left(\bar{z} \vee a_{3} \vee a_{4}\right)$, wherein z is a new variable. If some setting of the a_{i} 's satisfies the original clause, we can find some setting of z so that the two new clauses are satisfied. In general, if the clause contains l literals,

$$
\left(a_{1} \vee a_{2} \vee \cdots \vee a_{l}\right),
$$

we can replace it with the $l-2$ clauses

$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\overline{z_{1}} \vee a_{3} \vee z_{2}\right) \wedge\left(\overline{z_{2}} \vee a_{4} \vee z_{3}\right) \wedge \cdots \wedge\left(\overline{z_{l-3}} \vee a_{l-1} \vee a_{l}\right)
$$

We may easily verify that the new formula is satisfiable iff the original formula was, so the proof is complete.

CLIQUE is

NP-Complete

THEOREM 7.32

$3 S A T$ is polynomial time reducible to CLIQUE.

PROOF IDEA The polynomial time reduction f that we demonstrate from $3 S A T$ to CLIQUE converts formulas to graphs. In the constructed graphs, cliques of a specified size correspond to satisfying assignments of the formula. Structures within the graph are designed to mimic the behavior of the variables and clauses.

CLIQUE is

NP-Complete

PROOF Let ϕ be a formula with k clauses such as

$$
\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \cdots \wedge\left(a_{k} \vee b_{k} \vee c_{k}\right)
$$

The reduction f generates the string $\langle G, k\rangle$, where G is an undirected graph defined as follows.

The nodes in G are organized into k groups of three nodes each called the triples, t_{1}, \ldots, t_{k}. Each triple corresponds to one of the clauses in ϕ, and each node in a triple corresponds to a literal in the associated clause. Label each node of G with its corresponding literal in ϕ.

The edges of G connect all but two types of pairs of nodes in G. No edge is present between nodes in the same triple and no edge is present between two nodes with contradictory labels, as in x_{2} and $\overline{x_{2}}$. The following figure illustrates this construction when $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$.

CLIQUE is
 NP-Complete

FIGURE 7.33

'The graph that the reduction produces from
$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

CLIQUE E NP-Complete: $\langle\nmid\rangle$ ESSAT $\rightarrow\langle(G, k)$ CCLIQUE

Abstract

Suppose that ϕ has a satisfying assignment. In that satisfying assignment, at least one literal is true in every clause. In each triple of G, we select one node corresponding to a true literal in the satisfying assignment. If more than one literal is true in a particular clause, we choose one of the true literals arbitrarily. The nodes just selected form a k-clique. The number of nodes selected is k, because we chose one for each of the k triples. Each pair of selected nodes is joined by an edge because no pair fits one of the exceptions described previously. They could not be from the same triple because we selected only one node per triple. They could not have contradictory labels because the associated literals were both true in the satisfying assignment. Therefore G contains a k-clique.

CLIQUE \in NP-Complete: $(6, \mathrm{~K})$ ECLIQUE $\rightarrow>(\phi)$ ESSAT

Suppose that G has a k-clique. No two of the clique's nodes occur in the same triple because nodes in the same triple aren't connected by edges. Therefore each of the k triples contains exactly one of the k clique nodes. We assign truth values to the variables of ϕ so that each literal labeling a clique node is made true. Doing so is always possible because two nodes labeled in a contradictory way are not connected by an edge and hence both can't be in the clique. This assignment to the variables satisfies ϕ because each triple contains a clique node and hence each clause contains a literal that is assigned TRUE. Therefore ϕ is satisfiable.

Vertex-Cover is NP-Complete

THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size:

VERTEX-COVER $=\{\langle G, k\rangle \mid G$ is an undirected graph that has a k-node vertex cover $\}$.

Vertex-Cover is NP-Complete

THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size:

$$
\begin{gathered}
\text { VERTEX-COVER }=\{\langle G, k\rangle \mid G \text { is an undirected graph that } \\
\text { has a } k \text {-node vertex cover }\} .
\end{gathered}
$$

THEOREM 7.44

VERTEX-COVER is NP-complete.

Vertex-Cover is NP-Complele

PROOF Here are the details of a reduction from 3SAT to VERTEX-COVER that operates in polynomial time. The reduction maps a Boolean formula ϕ to a graph G and a value k. For each variable x in ϕ, we produce an edge connecting two nodes. We label the two nodes in this gadget x and \bar{x}. Setting x to be TRUE corresponds to selecting the left node for the vertex cover, whereas FALSE corresponds to the right node.

Vertex-Cover is NP-Complete

The gadgets for the clauses are a bit more complex. Each clause gadget is a triple of three nodes that are labeled with the three literals of the clause. These three nodes are connected to each other and to the nodes in the variables gadgets that have the identical labels. Thus the total number of nodes that appear in G is $2 m+3 l$, where ϕ has m variables and l clauses. Let k be $m+2 l$.

For example, if $\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$, the reduction produces $\langle G, k\rangle$ from ϕ, where $k=8$ and G takes the form shown in the following figure.

FIGURE 7.45

The graph that the reduction produces from
$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

Vertex-Cover \in NP-Complete: $\langle\phi\rangle \in 3 S A T \rightarrow(G, k\rangle \in V-C$

To prove that this reduction works, we need to show that ϕ is satisfiable if and only if G has a vertex cover with k nodes. We start with a satisfying assignment. We first put the nodes of the variable gadgets that correspond to the true literals in the assignment into the vertex cover. Then, we select one true literal in every clause and put the remaining two nodes from every clause gadget into the vertex cover. Now, we have a total of k nodes. They cover all edges because every variable gadget edge is clearly covered, all three edges within every clause gadget are covered, and all edges between variable and clause gadgets are covered. Hence G has a vertex cover with k nodes.

Vertex-Cover \in NP-Complete: $\langle\in, k\rangle \in V-C \rightarrow\langle\phi\rangle \in$ 3SAT

Second, if G has a vertex cover with k nodes, we show that ϕ is satisfiable by constructing the satisfying assignment. The vertex cover must contain one node in each variable gadget and two in every clause gadget in order to cover the edges of the variable gadgets and the three edges within the clause gadgets. That accounts for all the nodes, so none are left over. We take the nodes of the variable gadgets that are in the vertex cover and assign the corresponding literals TRUE. That assignment satisfies ϕ because each of the three edges connecting the variable gadgets with each clause gadget is covered and only two nodes of the clause gadget are in the vertex cover. Therefore one of the edges must be covered by a node from a variable gadget and so that assignment satisfies the corresponding clause.

Beyond
 NP-Complekeness

Beyond
 NP-Completeness

Beyond NP-Completeness

- PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.

Beyond NP-Completeness

- PSpace Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them may be solved within reasonable (Poly) amount of time, then all of them can.

Beyond NP-Completeness

DEFINITION 8.1

Let M be a deterministic Turing machine that halts on all inputs. The space complexity of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of tape cells that M scans on any input of length n. If the space complexity of M is $f(n)$, we also say that M runs in space $f(n)$.

If M is a nondeterministic Turing machine wherein all branches halt on all inputs, we define its space complexity $f(n)$ to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

Space Complexity

DEFINITION 8.2

Let $f: \mathcal{N} \longrightarrow \mathcal{R}^{+}$be a function. The space complexity classes, $\operatorname{SPACE}(f(n))$ and $\operatorname{NSPACE}(f(n))$, are defined as follows.
$\operatorname{SPACE}(f(n))=\{L \mid L$ is a language decided by an $O(f(n))$ space
deterministic Turing machine $\}.$
$\operatorname{NSPACE}(f(n))=\{L \mid L$ is a language decided by an $O(f(n))$ space nondeterministic Turing machine\}.

THEOREM 8.5

Savitch's theorem For any ${ }^{1}$ function $f: \mathcal{N} \longrightarrow \mathcal{R}^{+}$, where $f(n) \geq n$, $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$.

Space Complexicy

DEFINITION 8.6

PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

$$
\operatorname{PSPACE}=\bigcup_{k} \operatorname{SPACE}\left(n^{k}\right)
$$

We define NPSPACE, the nondeterministic counterpart to PSPACE, in terms of the NSPACE classes. However, PSPACE = NPSPACE by virtue of Savitch's theorem, because the square of any polynomial is still a polynomial.

$$
\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}=\mathrm{NPSPACE} \subseteq \operatorname{EXPTIME}=\bigcup_{\underline{k}} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Space/Time Complexily Languages EXPTime

Space/Time Complexily Languages
 EXPTime
 PSpace
 NP
 P
 NP = PSpace ?

Space/Time Complexily Languages EXPTime

Space/Time Complexily
 Decidable Languages EXPTime

 PSpace=EXPTime?

Space/Time Complexily Languages EXPTime

$$
\begin{aligned}
& \text { Space/Time Complexily } \\
& \text { Decidable } \\
& \text { Languages } \\
& \text { EXPTime } \\
& \text { Pspace } \\
& \text { P } \\
& \text { P } \ddagger \text { EXPTime }
\end{aligned}
$$

Space Complexily

DEFINITION 8.8

A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-bard.

PSpace Compleceness

Space Completeness

- Geography Game:

Given a set of country names: Aruba, Cuba, Canada, Equador, France, Italy, Japan, Korea, Nigeria, Russia, Vietnam, Yemen.

Space Completeness

- Geography Game:

Given a set of country names: Aruba, Cuba, Canada, Equador, France, Italy, Japan, Korea, Nigeria, Russia, Vietnam, Yemen.

- A two player game: One player chooses a name and crosses it out. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Ceneralized Ceography

Generalized Ceography

- Civen an arbilrary sel of names: $\omega_{1}, \ldots, \omega_{n}$.

Generalized Geography

- Given an arbitrary set of names: $\omega_{1}, \ldots, \omega_{n}$.
- Is there a winning strategy for the first player to the previous game?

Theorelical Computer Science

Theorelical

 Computer Science- Challenges of TCS:

Computer Science

- Challenges of TCS:
- FIND efficient solutions ko many problems. (Algorithms and Dala Structures)

Theoretical

Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems. (Algorithms and Data Structures)
- PROVE that certain problems are NOT computable within a certain time or space.

Theoretical Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems. (Algorithms and Data Structures)
- PROVE that certain problems are NOT computable within a certain time or space.
- Consider new models of computation. (Such as a Quantum Computer)

COMP-330
 Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Lec. 22-23 :

Introduction to Complexity

[^0]: *" any language A in NP" really means:
 "any language A provably in NP".

