COMP-330

 Theory of Computation

 Theory of Computation}

Fall 2019 -- Prof. Claude Crépeau Lec. 20-21: Reducibility

Computability Theory

Languages

Decidable Languages

 we canUNdecidable
via Diagonalization

UNdecidable
 via Reductions

Reducibility

Decidable	Undecidable
ADFA	EQcFg
ANFA	ATM
Arex	HALT TM
EDFA	ETM
EQdFA	REGULARTM
Acfg	EQTM
ECFG	PCP

Reducibility

Reducibility always involves two problems, which we call A and B. If A reduces to B, we can use a solution to B to solve A. So in our example, A is the problem of finding your way around the city and B is the problem of obtaining a map. Note that reducibility says nothing about solving A or B alone, but only about the solvability of A in the presence of a solution to B.

Reducibility

$H A L T_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$.

THEOREM 5.1

$H A L T_{\mathrm{TM}}$ is undecidable.

Reducibility

PROOF Let's assume for the purposes of obtaining a contradiction that TM R decides $H A L T_{\text {TM }}$. We construct TM S to decide $A_{\text {TM }}$, with S operating as follows.
$S=$ "On input $\langle M, w\rangle$, an encoding of a TM M and a string w :

1. Run TM R on input $\langle M, w\rangle$.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject."

Clearly, if R decides $H A L T_{\text {TM }}$, then S decides $A_{\text {тм }}$. Because $A_{\text {TM }}$ is undecidable, $H A L T_{\mathrm{TM}}$ also must be undecidable.

Reducibility

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\} .
$$

THEOREM 5.2

$E_{T M}$ is undecidable.

Reducibility

PROOF Let's write the modified machine described in the proof idea using our standard notation. We call it M_{1}.
$M_{1}=$ "On input x :

1. If $x \neq w$, reject.
2. If $x=w$, run M on input w and accept if M does."

This machine has the string w as part of its description. It conducts the test of whether $x=w$ in the obvious way, by scanning the input and comparing it character by character with w to determine whether they are the same.

Reducibility

Putting all this together, we assume that TM R decides E_{TM} and construct TM S that decides $A_{\text {тм }}$ as follows.
$S=$ "On input $\langle M, w\rangle$, an encoding of a $T M M$ and a string w :

1. Use the description of M and w to construct the $T M M_{1}$ just described.
2. Run R on input $\left\langle M_{1}\right\rangle$.
3. If R accepts, reject; if R rejects, accept."

Note that S must actually be able to compute a description of M_{1} from a description of M and w. It is able to do so because it needs only add extra states to M that perform the $x=w$ test.

If R were a decider for $E_{\text {TM }}, S$ would be a decider for $A_{\text {TM }}$. A decider for $A_{\text {TM }}$ cannot exist, so we know that $E_{\text {TM }}$ must be undecidable.

Reducibility

$R^{2} G U L A R_{\mathrm{TM}}=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is a regular language $\}$.

THEOREM 5.3
$R E G U L A R_{\text {TM }}$ is undecidable.

Reducibility

PROOF We let R be a TM that decides $R E G U L A R_{\text {TM }}$ and construct TM S to decide $A_{\text {тм }}$. Then S works in the following manner.
$S=$ "On input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Construct the following $\mathrm{TM} M_{2}$.
$M_{2}=$ "On input x :
2. If x has the form $0^{n} 1^{n}$, accept.
3. If x does not have this form, run M on input w and accept if M accepts w."
4. Run R on input $\left\langle M_{2}\right\rangle$.
5. If R accepts, accept; if R rejects, reject."

$L\left(M_{2}\right)= \begin{cases}\left\{0^{n}|n| n \geq 0\right\} & \text { if } M \text { rejects } w \\ \Sigma^{*} & \text { if } M \text { accepts } w\end{cases}$

Reducibility

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1} \text { and } M_{2} \text { are TMs and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} .
$$

THEOREM 5.4
$E Q_{T M}$ is undecidable.

Reducibility

```
PROOF We let TM R decide }E\mp@subsup{Q}{\mathrm{ TM }}{}\mathrm{ and construct TM }S\mathrm{ to decide }\mp@subsup{E}{\mathrm{ TM }}{}\mathrm{ as follows.
\(S=\) "On input \(\langle M\rangle\), where \(M\) is a TM:
1. Run \(R\) on input \(\left\langle M, M_{1}\right\rangle\), where \(M_{1}\) is a TM that rejects all inputs.
2. If \(R\) accepts, accept; if \(R\) rejects, reject."
```

If R decides $E Q_{\mathrm{TM}}, S$ decides E_{TM}. But E_{TM} is undecidable by Theorem 5.2, so $E Q_{\mathrm{TM}}$ also must be undecidable.

Reducibility

Reducibility

Reducibility

5.28 Rice's theorem. Let P be any nontrivial property of the language of a Turing machine. Prove that the problem of determining whether a given Turing machine's language has property P is undecidable.
In more formal terms, let P be a language consisting of Turing machine descriptions where P fulfills two conditions. First, P is nontrivial-it contains some, but not all, TM descriptions. Second, P is a property of the TM's language--whenever $L\left(M_{1}\right)=L\left(M_{2}\right)$, we have $\left\langle M_{1}\right\rangle \in P$ iff $\left\langle M_{2}\right\rangle \in P$. Here, M_{1} and M_{2} are any TMs. Prove that P is an undecidable language.

Post Correspondence Problem

Post Correspondence Problem

Post Correspondence Problem

- In 1946, Emil Post gave a very natural example of an undecidable language...

Post Correspondence Problem

- In 1946, Emil Post gave a very natural example of an undecidable language...
- It is the "Post Correspondence Problem".

Post Correspondence Problem

Post Correspondence Problem

- An instance of PCP with 6 dominos.

Post Correspondence Problem

- An instance of PCP with 6 dominos.
- A solution to PCP

Post Correspondence Problem

- An instance of PCP with 6 dominos.
- A solution to PCP
aa
a

Post Correspondence Problem

- An instance of PCP with 6 dominos.
- A solution to PCP

aa	bbb
a	a

Post Correspondence Problem

- An instance of PCP with 6 dominos.
- A solution to PCP

$\frac{\mathrm{aa}}{\mathrm{a}}$	bbb	\underline{b}
a	a	

Post Correspondence Problem

- An instance of PCP with 6 dominos.
- A solution to PCP

| $a \mathrm{a}$ bbb
 a $\underline{\mathrm{b}}$
 a
 bb l |
| :---: | :---: | :---: | :---: |

Post Correspondence Problem

- An instance of PCP with 6 dominos.
- A solution to PCP

Post Correspondence Problem

aaa $\quad a \quad b b b$ aa $-\underline{b}$ bb bb a a bb

- An instance of PCP with 6 dominos.
- A solution to PCP

$\frac{a a}{a}$	$\frac{b b b}{a}$	\underline{b}	$\overline{b b}$

Post Correspondence Problem

- An instance of PCP with 6 dominos.
- A solution to PCP

Post Correspondence Problem

Post Correspondence Problem

- Given n dominos, $\left[u_{1} / v_{1}\right] \ldots\left[U_{n} / v_{n}\right]$ where each u_{i} or v_{i} is a string of symbols.

Post Correspondence Problem

Given n dominos, $\left[u_{1} / v_{1}\right] \ldots\left[u_{n} / v_{n}\right]$ where each u_{i} or v_{i} is a string of symbols.

- Is there an integer k and a sequence $\left\langle i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right)$ (with each $1 \leq i_{j} \leq n$) s.t.
$u_{i} \circ u_{i_{2}} \circ u_{i_{3}} \circ \ldots \circ u_{i_{k}}=v_{i_{1}} \circ v_{i_{2}} \circ v_{i_{3}} \circ \ldots \circ v_{i_{3}}$?

Post Correspondence Problem
u_{1}

u_{3}
u_{n}
v_{n}
Given n dominos, $\left[u_{1} / v_{1}\right] \ldots\left[u_{n} / v_{n}\right]$ where each u_{i} or v_{i} is a string of symbols.

- Is there an integer k and a sequence $\left\langle i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right)$ (with each $1 \leq i_{j} \leq n$) s.t.
$u_{i} \circ u_{i_{2}} \circ u_{i_{3}} \circ \ldots \circ u_{i_{k}}=v_{i_{1}} \circ v_{i_{2}} \circ v_{i_{3}} \circ \ldots \circ v_{i_{k}}$?

A Solution to PCP

A Solution to PCP

$\frac{u_{1}}{v_{1}} \quad \frac{u_{2}}{v_{2}} \quad \frac{u_{3}}{v_{3}} \quad \ldots \quad \frac{u_{n}}{v_{n}}$

A Solution to PCP

$$
\frac{u_{1}}{v_{1}} \quad \frac{u_{2}}{v_{2}} \quad \frac{u_{3}}{v_{3}} \quad \cdots \quad \frac{u_{n}}{v_{n}}
$$

- A solution is of this form:

A Solution to PCP

$$
\frac{u_{1}}{v_{1}} \quad \frac{u_{2}}{v_{2}} \quad \frac{u_{3}}{v_{3}} \quad \ldots . \quad \frac{u_{n}}{v_{n}}
$$

- A solution is of this form:

$$
\begin{array}{lllllll}
\frac{u_{i_{1}}}{v_{i_{1}}} & \frac{u_{i_{2}}}{v_{i_{2}}} & \frac{u_{i_{3}}}{v_{i_{3}}} & \frac{u_{i_{4}}}{v_{i_{4}}} & \frac{u_{i_{5}}}{v_{i_{5}}} & \ldots & \frac{u_{i_{k}}}{v_{i_{k}}}
\end{array}
$$

A Solution to PCP

$$
\frac{u_{1}}{v_{1}} \quad \frac{u_{2}}{v_{2}} \quad \frac{u_{3}}{v_{3}} \quad \ldots \quad \frac{u_{n}}{v_{n}}
$$

- A solution is of this form:

$$
\begin{array}{lllllll}
\frac{u_{i_{1}}}{v_{i_{1}}} & \frac{u_{i_{2}}}{v_{i_{2}}} & \frac{u_{i_{3}}}{v_{i_{3}}} & \frac{u_{i_{4}}}{v_{i_{4}}} & \frac{u_{i_{5}}}{v_{i_{5}}} & \ldots & \frac{u_{i_{k}}}{v_{i_{k}}}
\end{array}
$$

s.t.

$$
u_{i_{1}} \circ u_{i_{2}} \circ u_{i_{3}} \circ \ldots \circ u_{i_{k}}=v_{i_{1}} \circ v_{i_{2}} \circ v_{i_{3}} \circ \ldots \circ v_{i_{k}} ?
$$

Post Correspondence Problem

Post Correspondence Problem

- Theorem:

The Post Correspondence Problem cannot be decided by any algorithm (or computer program). In particular, no algorithm can identify in a finite amount of time some instances that have a No outcome. However, if a solution exists, we can find it. PCP is Turingrecognizable.

Reducing ATM to MPCP

 a (mostly) complete example

 a (mostly) complete example}

Post Correspondence Problem

Post Correspondence Problem

- Proof Idea:

Reduction - if PCP was decidable then the ACCEPTANCE problem would be decidable as well.

Computation History

DEFINITION 5.5

Let M be a Turing machine and w an input string. An accepting computation bistory for M on w is a sequence of configurations, $C_{1}, C_{2}, \ldots, C_{l}$, where C_{1} is the start configuration of M on w, C_{l} is an accepting configuration of M, and each C_{i} legally follows from C_{i-1} according to the rules of M. A rejecting computation bistory for M on w is defined similarly, except that C_{l} is a rejecting configuration.

Am:

ATM :
a Reduction
to MPCP

ATM :
A story
a Reduction
to MPCP
in seven parts

Aтм :
a Reduction to MPCP

A story
in seven parts

$A_{\text {TM }}:$
 a Reduction to MPCP

A story
in seven parts

```
R-move
    q0
    2q
```


$A_{\text {TM }}:$
 a Reduction to MPCP

A story in seven parts

$A_{\text {TM }}:$
a Reduction to MPCP

A story in seven parts
$A_{\text {TM }}:$
a Reduction to MPCP

A story in seven parts

ATM :
 a Reduction to MPCP

A story in seven parts

ATM :
 a Reduction to MPCP

A story in seven parts

Reducing $A_{T M}$ to MPCP

PROOF We let TM R decide the PCP and construct S deciding $A_{\text {TM }}$. Let

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\mathrm{reject}}\right),
$$

where Q, Σ, Γ, and δ, are the state set, input alphabet, tape alphabet, and transition function of M, respectively.

Reducing $A_{T M}$ to MPCP

PROOF We let TM R decide the PCP and construct S deciding $A_{\text {TM }}$. Let

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)
$$

where Q, Σ, Γ, and δ, are the state set, input alphabet, tape alphabet, and transition function of M, respectively.
$M P C P=\{\langle P\rangle \mid P$ is an instance of the Post correspondence problem with a match that starts with the first domino $\}$.

Reducing ATM to MPCP

PROOF We let TM R decide the PCP and construct S deciding $A_{\text {TM }}$. Let

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)
$$

where Q, Σ, Γ, and δ, are the state set, input alphabet, tape alphabet, and transition function of M, respectively.
$M P C P=\{\langle P\rangle \mid P$ is an instance of the Post correspondence problem
with a match that starts with the first domino $\}.$

In this case S constructs an instance of the PCP P that has a match iff M accepts w. To do that S first constructs an instance P^{\prime} of the MPCP. We describe the construction in seven parts, each of which accomplishes a particular aspect of simulating M on w. To explain what we are doing we interleave the construction with an example of the construction in action.

Part 1. The construction begins in the following manner.

$$
\text { Put }\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right] \text { into } P^{\prime} \text { as the first domino }\left[\frac{t_{1}}{b_{1}}\right] \text {. }
$$

Because P^{\prime} is an instance of the MPCP, the match must begin with this domino. Thus the bottom string begins correctly with $C_{1}=q_{0} w_{1} w_{2} \cdots w_{n}$, the first configuration in the accepting computation history for M on w, as shown in the following figure.

FIGURE 5.16
Beginning of the MPCP match

Reducing $A_{T M}$ to MPCP

In this depiction of the partial match achieved so far, the bottom string consists of $\# q_{0} w_{1} w_{2} \cdots w_{n} \#$ and the top string consists only of \#. To get a match we need to extend the top string to match the bottom string. We provide additional dominos to allow this extension. The additional dominos cause M 's next configuration to appear at the extension of the bottom string by forcing a single-step simulation of M.

In parts 2,3 , and 4 , we add to P^{\prime} dominos that perform the main part of the simulation. Part 2 handles head motions to the right, part 3 handles head motions to the left, and part 4 handles the tape cells not adjacent to the head.

Reducing $A_{T M}$ to MPCP

Part 2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\mathrm{reject}}$,

$$
\text { if } \delta(q, a)=(r, b, \mathrm{R}), \text { put }\left[\frac{q a}{b r}\right] \text { into } P^{\prime} .
$$

Reducing $A_{T M}$ to MPCP

Part 2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\mathrm{reject}}$,

$$
\text { if } \delta(q, a)=(r, b, \mathrm{R}), \text { put }\left[\frac{q a}{b r}\right] \text { into } P^{\prime} .
$$

Part 3. For every $a, b, c \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$,

$$
\text { if } \delta(q, a)=(r, b, \mathrm{~L}), \text { put }\left[\frac{c q a}{r c b}\right] \text { into } P^{\prime} .
$$

Reducing $A_{T M}$ to MPCP

Part 2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\mathrm{reject}}$,

$$
\text { if } \delta(q, a)=(r, b, \mathrm{R}), \text { put }\left[\frac{q a}{b r}\right] \text { into } P^{\prime}
$$

Part 3. For every $a, b, c \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$,

$$
\text { if } \delta(q, a)=(r, b, \mathrm{~L}), \text { put }\left[\frac{c q a}{r c b}\right] \text { into } P^{\prime} .
$$

Part 4. For every $a \in \Gamma$,

$$
\text { put }\left[\frac{a}{a}\right] \text { into } P^{\prime} .
$$

Now we make up a hypothetical example to illustrate what we have built so far. Let $\Gamma=\{0,1,2, \omega\}$. Say that w is the string 0100 and that the start state of M is q_{0}. In state q_{0}, upon reading a 0 , let's say that the transition function dictates that M enters state q_{7}, writes a 2 on the tape, and moves its head to the right. In other words, $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, \mathrm{R}\right)$.

Part 1 places the domino

$$
\left[\frac{\#}{\# q_{0} 0100 \#}\right]=\left[\frac{t_{1}}{b_{1}}\right]
$$

in P^{\prime}, and the match begins:

In addition, part 2 places the domino

$$
\left[\frac{q_{0} 0}{2 q_{7}}\right]
$$

as $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, \mathrm{R}\right)$ and part 4 places the dominos

$$
\left[\frac{0}{0}\right],\left[\frac{1}{1}\right],\left[\frac{2}{2}\right] \text {, and }\left[\frac{\cup}{v}\right]
$$

in P^{\prime}, as $0,1,2$, and \sqcup are the members of Γ. That, together with part 5 , allows us to extend the match to

Reducing $A_{T M}$ to MPCP

Thus the dominos of parts 2,3 , and 4 let us extend the match by adding the second configuration after the first one. We want this process to continue, adding the third configuration, then the fourth, and so on. For it to happen we need to add one more domino for copying the \# symbol.

Reducing $A_{T M}$ to MPCP

Thus the dominos of parts 2, 3, and 4 let us extend the match by adding the second configuration after the first one. We want this process to continue, adding the third configuration, then the fourth, and so on. For it to happen we need to add one more domino for copying the \# symbol.

Part 5.

$$
\text { Put }\left[\frac{\#}{\#}\right] \text { and }\left[\frac{\#}{\mathrm{U} \#}\right] \text { into } P^{\prime} \text {. }
$$

'The first of these dominos allows us to copy the \# symbol that marks the separation of the configurations. In addition to that, the second domino allows us to add a blank symbol \sqcup at the end of the configuration to simulate the infinitely many blanks to the right that are suppressed when we write the configuration.

Reducing $A_{T M}$ to MPCP

Continuing with the example, let's say that in state q_{7}, upon reading a $1, M$ goes to state q_{5}, writes a 0 , and moves the head to the right. That is, $\delta\left(q_{7}, 1\right)=$ $\left(q_{5}, 0, \mathrm{R}\right)$. Then we have the domino

$$
\left[\frac{q_{7} 1}{0 q_{5}}\right] \text { in } P^{\prime} .
$$

So the latest partial match extends to

Then, suppose that in state q_{5}, upon reading a $0, M$ goes to state q_{9}, writes a 2 , and moves its head to the left. So $\delta\left(q_{5}, 0\right)=\left(q_{9}, 2, \mathrm{~L}\right)$. Then we have the dominos

$$
\left[\frac{0 q_{5} 0}{q_{9} 02}\right],\left[\frac{1 q_{5} 0}{q_{9} 12}\right],\left[\frac{2 q_{5} 0}{q_{9} 22}\right], \text { and }\left[\frac{\sqcup q_{5} 0}{q_{9} \sqcup 2}\right]
$$

'The first one is relevant because the symbol to the left of the head is a 0 . The preceding partial match extends to

Note that, as we construct a match, we are forced to simulate M on input w. 'This process continues until M reaches a halting state. If an accept state occurs, we want to let the top of the partial match "catch up" with the bottom so that the match is complete. We can arrange for that to happen by adding additional dominos.

Part 6. For every $a \in \Gamma$,

$$
\text { put }\left[\frac{a q_{\text {accept }}}{q_{\text {accept }}}\right] \text { and }\left[\frac{q_{\text {accept }} a}{q_{\text {accept }}}\right] \text { into } P^{\prime} .
$$

This step has the effect of adding "pseudo-steps" of the Turing machine after it has halted, where the head "eats" adjacent symbols until none are left. Continuing with the example, if the partial match up to the point when the machine halts in an accept state is

Reducing $A_{T M}$ to MPCP

The dominos we have just added allow the match to continue:

Part 7. Finally we add the domino
$\left[\frac{q_{\text {accept }} \# \#}{\#}\right]$
and complete the match:

That concludes the construction of P^{\prime}. Recall that P^{\prime} is an instance of the MPCP whereby the match simulates the computation of M on w. To finish the proof, we recall that the MPCP differs from the PCP in that the match is required to start with the first domino in the list. If we view P^{\prime} as an instance of the PCP instead of the MPCP, it obviously has a match, regardless of whether M halts on w. Can you find it? (Hint: It is very short.)

ATM :
 a Reduction to MPCP

A story in seven parts

Reducing ATM to MPCP

 a (mostly) complete example

 a (mostly) complete example}

Reducing MPCP to PCP

We now show how to convert P^{\prime} to P, an instance of the PCP that still simulates M on w. We do so with a somewhat technical trick. The idea is to build the requirement of starting with the first domino directly into the problem so that stating the explicit requirement becomes unnecessary. We need to introduce some notation for this purpose.

Let $u=u_{1} u_{2} \cdots u_{n}$ be any string of length n. Define $\star u, u \star$, and $\star u \star$ to be the three strings

$$
\begin{aligned}
& \star u=* u_{1} * u_{2} * u_{3} * \\
& \cdots \star= \\
& u_{1} * u_{2} * u_{3} * \cdots \\
& * u_{n} \\
& \star u \star=* u_{1} * u_{2} * u_{3} * \\
& \cdots * u_{n} *
\end{aligned}
$$

Here, $\star u$ adds the symbol $*$ before every character in $u, u \star$ adds one after each character in u, and $\star u \star$ adds one both before and after each character in u.

Reducing MPCP to PCP

To convert P^{\prime} to P, an instance of the PCP, we do the following. If P^{\prime} were the collection

$$
\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right],\left[\frac{t_{3}}{b_{3}}\right], \ldots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

we let P be the collection

$$
\left\{\left[\frac{\star t_{1}}{\star b_{1} \star}\right],\left[\frac{\star t_{1}}{b_{1} \star}\right],\left[\frac{\star t_{2}}{b_{2} \star}\right],\left[\frac{\star t_{3}}{b_{3} \star}\right], \ldots,\left[\frac{\star t_{k}}{b_{k^{\star}}}\right],\left[\frac{* \diamond}{\diamond}\right]\right\} .
$$

Reducing MPCP to PCP

Considering P as an instance of the PCP, we see that the only domino that could possibly start a match is the first one,

$$
\left[\frac{\star t_{1}}{\star b_{1} \star}\right]
$$

because it is the only one where both the top and the bottom start with the same symbol-namely, *. Besides forcing the match to start with the first domino, the presence of the $*$ s doesn't affect possible matches because they simply interleave with the original symbols. The original symbols now occur in the even positions of the match. The domino

$$
\left[\frac{* \diamond}{\diamond}\right]
$$

is there to allow the top to add the extra $*$ at the end of the match.

Reducibility

Reducibility

$$
A L L_{\mathrm{CFG}}=\left\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\Sigma^{*}\right\}
$$

THEOREM 5.13

$A L L_{\mathrm{CFG}}$ is undecidable.

EOcaf decidable \Rightarrow ALLcra decidable

$E_{\text {cFs }}=\left\{\left\langle G_{1}, G_{2}\right\rangle \mid G_{1}, G_{2}\right.$ are CFGs and $\left.L\left(G_{1}\right)=L\left(G_{2}\right)\right\}$
Let $\left\langle\mathrm{G}_{2}\right\rangle$ be such that $\mathrm{L}\left(\mathrm{G}_{2}\right)=\Sigma^{*} .\left(\mathrm{G}_{2}: \mathrm{R} \rightarrow \varepsilon|O R| I R\right)$ $\langle G\rangle \in A L L c F g \Leftrightarrow\left\langle G, G 2 \in E Q_{c F G}\right.$

ALLcrec decidable \Rightarrow ATM decidable

We now describe how to use a decision procedure for $A L L_{\text {CFG }}$ to decide $A_{\text {TM }}$. For a TM M and an input w, we construct a CFG G that generates all strings if and only if M does not accept w. So if M does accept w, G does not generate some particular string. This string is-guess what-the accepting computation history for M on w. That is, G is designed to generate all strings that are not accepting computation histories for M on w.

To make the CFG G generate all strings that fail to be an accepting computation history for M on w, we utilize the following strategy. A string may fail to be an accepting computation history for several reasons. An accepting computation history for M on w appears as $\# C_{1} \# C_{2} \# \cdots \# C_{l} \#$, where C_{i} is the configuration of M on the i th step of the computation on w. Then, G generates all strings

1. that do not start with C_{1},
2. that do not end with an accepting configuration, or
3. in which some C_{i} does not properly yield C_{i+1} under the rules of M.

If M does not accept w, no accepting computation history exists, so all strings fail in one way or another. Therefore, G would generate all strings, as desired.

PDA $D(\leftrightarrow G)$ for

M does not accept w

FIGURE 5.14
Every other configuration written in reverse order

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.
- The third branch is supposed to accept if some C_{i} does not properly yield C_{i+1} :

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.
- The third branch is supposed to accept if some C_{i} does not properly yield C_{i+1} :
- It works by scanning the input until it nondeterministically decides that it has come to C_{i}.

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.
- The third branch is supposed to accept if some C_{i} does not properly yield C_{i+1} :
- It works by scanning the input until it nondeterministically decides that it has come to C_{i}.
- Next, it pushes C_{i} onto the stack until it comes to the end as marked by the \# symbol.

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.
- The third branch is supposed to accept if some C_{i} does not properly yield C_{i+1} :
- It works by scanning the input until it nondeterministically decides that it has come to C_{i}.
- Next, it pushes C_{i} onto the stack until it comes to the end as marked by the \# symbol.
- Then D pops the stack to compare with C_{i+1}.

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.
- The third branch is supposed to accept if some C_{i} does not properly yield C_{i+1} :
- It works by scanning the input until it nondeterministically decides that it has come to C_{i}.
- Next, it pushes C_{i} onto the stack until it comes to the end as marked by the \# symbol.
- Then D pops the stack to compare with C_{i+1}.
- They are supposed to match except around the head position, where the difference is dictated by the transition function of M.

- One branch checks on whether the beginning of the input string is C_{1} and accepts if it isn't.
- Another branch checks on whether the input string ends with a configuration containing the accept state, $\mathrm{q}_{\text {accept, }}$ and accepts if it isn't.
- The third branch is supposed to accept if some C_{i} does not properly yield C_{i+1} :
- It works by scanning the input until it nondeterministically decides that it has come to C_{i}.
- Next, it pushes C_{i} onto the stack until it comes to the end as marked by the \# symbol.
- Then D pops the stack to compare with C_{i+1}.
- They are supposed to match except around the head position, where the difference is dictated by the transition function of M.
- Finally, D accepts if it discovers a mismatch or an improper update.

PDA $D(\leftrightarrow G)$ for

(M) does not accept w

$$
L(D)=\left\{\begin{array}{cc}
\Sigma^{*} \backslash\{\text { accerestans compptation nstaron\} }\} & \text { if } M \text { accepts } w \\
\Sigma^{*} & \text { if } M \text { rejects } w
\end{array}\right.
$$

- On input $\langle M, w\rangle$ generate $\langle G\rangle$ s.t.

$$
L(G)=\Sigma^{*} \leftrightarrow M \text { rejects } w
$$

- If AllcFg is decidable, then so is $A_{T M}$.

Mapping Reducibility

Computable Functions

A Turing machine computes a function by starting with the input to the function on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Computable Functions

A Turing machine computes a function by starting with the input to the function on the tape and halting with the output of the function on the tape.

DEFINITION 5.17

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

EXAMPLE 5.18

All usual arithmetic operations on integers are computable functions. For example, we can make a machine that takes input $\langle m, n\rangle$ and returns $m+n$, the sum of m and n. We don't give any details here, leaving them as exercises.

Mapping Reducibility

FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational problems by languages.

DEFINITION 5.20

Language A is mapping reducible to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$, where for every w,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

The function f is called the reduction of A to B.

Mapping Reducibility

'The following figure illustrates mapping reducibility.

FIGURE 5.21

THEOREM 5.22

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.
$N=$ "On input w :

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs."

Clearly, if $w \in A$, then $f(w) \in B$ because f is a reduction from A to B. Thus M accepts $f(w)$ whenever $w \in A$. Therefore N works as desired.

THEOREM 5.22

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.
$N=$ "On input w :

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs."

Clearly, if $w \in A$, then $f(w) \in B$ because f is a reduction from A to B. Thus M accepts $f(w)$ whenever $w \in A$. Therefore N works as desired.

COROLLARY 5.23

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

EXAMPLE 5.24

In Theorem 5.1 we used a reduction from A_{TM} to prove that $H A L T_{\mathrm{TM}}$ is undecidable. This reduction showed how a decider for $H A L T_{\mathrm{TM}}$ could be used to give a decider for $A_{\text {Тм }}$. We can demonstrate a mapping reducibility from $A_{\text {Тм }}$ to $H A L T_{\text {TM }}$ as follows. To do so we must present a computable function f that takes input of the form $\langle M, w\rangle$ and returns output of the form $\left\langle M^{\prime}, w^{\prime}\right\rangle$, where

$$
\langle M, w\rangle \in A_{\mathrm{TM}} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{\mathrm{TM}} .
$$

The following machine F computes a reduction f.
$F=$ "On input $\langle M, w\rangle$:

1. Construct the following machine M^{\prime}.
$M^{\prime}=$ "On input x :
2. Run M on x.
3. If M accepts, accept.
4. If M rejects, enter a loop."
5. Output $\left\langle M^{\prime}, w\right\rangle$."

Mapping Reducibility

EXAMPLE 5.25

The proof of the undecidability of the Post correspondence problem in Theorem 5.15 contains two mapping reductions. First, it shows that $A_{\text {TM }} \leq_{\mathrm{m}} M P C P$ and then it shows that $M P C P \leq_{\mathrm{m}} P C P$. In both cases we can easily obtain the actual reduction function and show that it is a mapping reduction. As Exercise 5.6 shows, mapping reducibility is transitive, so these two reductions together imply that $A_{\mathrm{TM}} \leq_{\mathrm{m}} P C P$.

Mapping Reducibility

THEOREM 5.28

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.
The proof is the same as that of Theorem 5.22, except that M and N are recognizers instead of deciders.

Mapping Reducibility

THEOREM 5.28

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.
The proof is the same as that of Theorem 5.22, except that M and N are recognizers instead of deciders.

COROLLARY 5.29

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Mapping Reducibility

In a typical application of this corollary, we let A be $\overline{A_{\mathrm{TM}}}$, the complement of $A_{\text {TM }}$. We know that $\overline{A_{\text {TM }}}$ is not Turing-recognizable from Corollary 4.23. The definition of mapping reducibility implies that $A \leq_{\mathrm{m}} B$ means the same as $\bar{A} \leq_{\mathrm{m}} \bar{B}$. To prove that B isn't recognizable we may show that $A_{\mathrm{TM}} \leq_{\mathrm{m}} \bar{B}$. We can also use mapping reducibility to show that certain problems are neither Turing-recognizable nor co-Turing-recognizable, as in the following theorem.

Mapping Reducibility

THEOREM 5.30

$E Q_{\text {TM }}$ is neither Turing-recognizable nor co-Turing-recognizable.

PROOF First we show that $E Q_{T M}$ is not Turing-recognizable. We do so by showing that $A_{\text {TM }}$ is reducible to $\overline{E Q_{\text {TM }}}$. The reducing function f works as follows.
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:

1. Construct the following two machines M_{1} and M_{2}.
$M_{1}=$ "On any input:
2. Reject."
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

Here, M_{1} accepts nothing. If M accepts w, M_{2} accepts everything, and so the two machines are not equivalent. Conversely, if M doesn't accept w, M_{2} accepts nothing, and they are equivalent. Thus f reduces $A_{\text {TM }}$ to $\overline{E Q_{T M}}$, as desired.

To show that $\overline{E Q_{\text {TM }}}$ is not Turing-recognizable we give a reduction from $A_{\text {TM }}$ to the complement of $\overline{E Q_{\mathrm{TM}}}$-namely, $E Q_{\mathrm{TM}}$. Hence we show that $A_{\mathrm{TM}} \leq_{\mathrm{m}}$ $E Q_{\mathrm{TM}}$. The following TM G computes the reducing function g.
$G=$ "The input is $\langle M, w\rangle$ where M is a TM and w a string:

1. Construct the following two machines M_{1} and M_{2}. $M_{1}=$ "On any input:
2. Accept."
$M_{2}=$ "On any input:
3. Run M on w.
4. If it accepts, accept."
5. Output $\left\langle M_{1}, M_{2}\right\rangle . "$

The only difference between f and g is in machine M_{1}. In f, machine M_{1} always rejects, whereas in g it always accepts. In both f and g, M accepts w iff M_{2} always accepts. In g, M accepts w iff M_{1} and M_{2} are equivalent. That is why g is a reduction from A_{TM} to $E Q_{\mathrm{TM}}$.

Turing Reducibility

Turing Reducibility

DEFINITION 6.18

An oracle for a language B is an external device that is capable of reporting whether any string w is a member of B. An oracle Turing machine is a modified Turing machine that has the additional capability of querying an oracle. We write M^{B} to describe an oracle Turing machine that has an oracle for language B.

Turing Reducibility

EXAMPLE 6.19

Consider an oracle for $A_{\text {TM }}$. An oracle Turing machine with an oracle for $A_{\text {TM }}$ can decide more languages than an ordinary Turing machine can. Such a machine can (obviously) decide $A_{\text {TM }}$ itself, by querying the oracle about the input. It can also decide E_{TM}, the emptiness testing problem for TMs with the following procedure called $T^{A_{\text {TM }}}$.
$T^{A_{\mathrm{TM}}}=$ "On input $\langle M\rangle$, where M is a TM :

1. Construct the following TM N.
$N=$ "On any input:
2. Run M in parallel on all strings in Σ^{*}.
3. If M accepts any of these strings, accept."
4. Query the oracle to determine whether $\langle N, 0\rangle \in A_{\text {TM }}$.
5. If the oracle answers NO, accept; if YES, reject."

Turing Reducibility

DEFINITION 6.20

Language A is Turing reducible to language B, written $A \leq_{\mathrm{T}} B$, if A is decidable relative to B.

Turing Reducibility

THEOREM 6.21

If $A \leq_{\mathrm{T}} B$ and B is decidable, then A is decidable.
PROOF If B is decidable, then we may replace the oracle for B by an actual procedure that decides B. Thus we may replace the oracle Turing machine that decides A by an ordinary Turing machine that decides A.

Computability Theory

Languages

we can describe

COMP-330

 Theory of Computation

 Theory of Computation}

Fall 2019 -- Prof. Claude Crépeau Lec. 20-21: Reducibility

