
COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Lec. 20-21: Reducibility

All languages

Decidable

 Languages

Context-free

Languages

Languages .

we can

 describe

UNdecidable

via Diagonalization

UNdecidable

via Reductions

Regular

Languages

Computability Theory

Decidable Undecidable
ADFA EQCFG

ANFA ATM

AREX HALTTM

EDFA ETM

EQDFA REGULARTM

ACFG EQTM

ECFG PCP

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

 {0n1n | n≥0} if M rejects w
L(M2)= .

 ∑* if M accepts w{

Reducibility

Reducibility

Reducibility

Decidable Undecidable
ADFA EQCFG

ANFA ATM

AREX HALTTM

EDFA ETM

EQDFA REGULARTM

ACFG EQTM

ECFG PCP

Reducibility

Decidable Undecidable
ADFA EQCFG

ANFA ATM

AREX HALTTM

EDFA ETM

EQDFA REGULARTM

ACFG EQTM

ECFG PCP

MPCP

ALLCFG

Reducibility

Post Correspondence
Problem

Emil Post

Post Correspondence
Problem

In 1946, Emil Post gave a very natural
example of an undecidable language...

Emil Post

Post Correspondence
Problem

In 1946, Emil Post gave a very natural
example of an undecidable language...

It is the "Post Correspondence Problem".

Emil Post

Post Correspondence
Problem

Post Correspondence
Problem

Post Correspondence
Problem

An instance of PCP with 6 dominos.

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

aa
a

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

aa
a

bbb
a

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

aa
a

bbb
a

b

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

aa
a

bbb
a

b

__
bb

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

aa
a

bbb
a

b

__
bb

__
bb

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

aa
a

bbb
a

b

__
bb

__
bb

Post Correspondence
Problem

An instance of PCP with 6 dominos.

A solution to PCP

aaa
bb

 a
 bb

bbb
a

aa
a

__
bb

b

aa
a

bbb
a

b

__
bb

__
bb

Post Correspondence
Problem

Given n dominos, [u1/v1] ... [un/vn]
where each ui or vi is a string of symbols.

Post Correspondence
Problem

Given n dominos, [u1/v1] ... [un/vn]
where each ui or vi is a string of symbols.

Is there an integer k and a sequence
⟨i1,i2,i3,...,ik⟩ (with each 1≤ij≤n) s.t.

ui1 ∘ ui2 ∘ ui3 ∘ ... ∘ uik = vi1 ∘ vi2 ∘ vi3 ∘ ... ∘ vik ?

Post Correspondence
Problem

Given n dominos, [u1/v1] ... [un/vn]
where each ui or vi is a string of symbols.

Is there an integer k and a sequence
⟨i1,i2,i3,...,ik⟩ (with each 1≤ij≤n) s.t.

ui1 ∘ ui2 ∘ ui3 ∘ ... ∘ uik = vi1 ∘ vi2 ∘ vi3 ∘ ... ∘ vik ?

u1

v1

u2

v2

u3

v3

un

vn

. . .

Post Correspondence
Problem

A Solution to PCP

A Solution to PCP

u1

v1

u2

v2

u3

v3

un

vn

. . .

A Solution to PCP

A solution is of this form:

u1

v1

u2

v2

u3

v3

un

vn

. . .

A Solution to PCP

A solution is of this form:

u1

v1

u2

v2

u3

v3

un

vn

. . .

ui3

vi3

ui4

vi4

ui5

vi5

uik

vik

. . .ui1

vi1

ui2

vi2

A Solution to PCP

A solution is of this form:

u1

v1

u2

v2

u3

v3

un

vn

. . .

ui3

vi3

ui4

vi4

ui5

vi5

uik

vik

. . .ui1

vi1

ui2

vi2

s.t.
ui1 ∘ ui2 ∘ ui3 ∘ ... ∘ uik = vi1 ∘ vi2 ∘ vi3 ∘ ... ∘ vik ?

Post Correspondence
Problem

Post Correspondence
Problem

Theorem:

The Post Correspondence Problem cannot be
decided by any algorithm (or computer
program). In particular, no algorithm can
identify in a finite amount of time some
instances that have a No outcome. However, if
a solution exists, we can find it. PCP is Turing-
recognizable.

Reducing ATM to MPCP

a (mostly) complete example

Post Correspondence
Problem

Post Correspondence
Problem

Proof Idea:

Reduction - if PCP was decidable then the
ACCEPTANCE problem would be decidable as well.

Computation History

ATM :

ATM :
a Reduction
to MPCP

ATM :
a Reduction
to MPCP

A story

in seven

parts

part 1.

start
ATM :
a Reduction
to MPCP

A story

in seven

parts

part 1.

start

part 2.

R-move

ATM :
a Reduction
to MPCP

A story

in seven

parts

part 1.

start

…
part 3.

L-move

part 2.

R-move

ATM :
a Reduction
to MPCP

A story

in seven

parts

part 1.

start

…
part 3.

L-move

part 2.

R-move

…
part 4.

copy

ATM :
a Reduction
to MPCP

A story

in seven

parts

part 1.

start

…
part 3.

L-move

part 2.

R-move

…
part 4.

copy blank

part 5.

ATM :
a Reduction
to MPCP

A story

in seven

parts

part 1.

start

…
part 3.

L-move

part 2.

R-move

…
part 4.

copy blank

part 5.

clean

part 6.

ATM :
a Reduction
to MPCP

A story

in seven

parts

part 1.

start

…
part 3.

L-move

part 2.

R-move

…
part 4.

copy

part 7.

the end

blank

part 5.

clean

part 6.

ATM :
a Reduction
to MPCP

A story

in seven

parts

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

Reducing ATM to MPCP

part 1.

start

…
part 3.

L-move

part 2.

R-move

…
part 4.

copy

part 7.

the end

blank

part 5.

clean

part 6.

ATM :

a Reduction

to MPCP

A story

in seven

parts

Reducing ATM to MPCP

a (mostly) complete example

Reducing MPCP to PCP

Reducing MPCP to PCP

Reducing MPCP to PCP

Reducibility

Decidable Undecidable
ADFA EQCFG

ANFA ATM

AREX HALTTM

EDFA ETM

EQDFA REGULARTM

ACFG EQTM

ECFG PCP

MPCP

ALLCFG

Reducibility

EQCFG = { ⟨G1,G2⟩ | G1,G2 are CFGs and L(G1)=L(G2)}

Let ⟨G2⟩ be such that L(G2)=∑*. (G2: R ➝ 𝞮 | 0R | 1R)
⟨G⟩∈ALLCFG ⟺ ⟨G,G2⟩∈EQCFG

EQCFG decidable ⇒ ALLCFG decidable

ALLCFG decidable ⇒ ATM decidable

PDA D(⬌G) for

M does not accept w

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isn’t.

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isn’t.

The third branch is supposed to accept if some Ci does not properly
yield Ci+1:

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isn’t.

The third branch is supposed to accept if some Ci does not properly
yield Ci+1:

It works by scanning the input until it nondeterministically decides that it
has come to Ci.

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isn’t.

The third branch is supposed to accept if some Ci does not properly
yield Ci+1:

It works by scanning the input until it nondeterministically decides that it
has come to Ci.

Next, it pushes Ci onto the stack until it comes to the end as marked by the
symbol.

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isn’t.

The third branch is supposed to accept if some Ci does not properly
yield Ci+1:

It works by scanning the input until it nondeterministically decides that it
has come to Ci.

Next, it pushes Ci onto the stack until it comes to the end as marked by the
symbol.

Then D pops the stack to compare with Ci+1.

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isn’t.

The third branch is supposed to accept if some Ci does not properly
yield Ci+1:

It works by scanning the input until it nondeterministically decides that it
has come to Ci.

Next, it pushes Ci onto the stack until it comes to the end as marked by the
symbol.

Then D pops the stack to compare with Ci+1.

They are supposed to match except around the head position, where the
difference is dictated by the transition function of M.

One branch checks on whether the beginning of the input string is
C1 and accepts if it isn’t.

Another branch checks on whether the input string ends with a
configuration containing the accept state, qaccept, and accepts if it isn’t.

The third branch is supposed to accept if some Ci does not properly
yield Ci+1:

It works by scanning the input until it nondeterministically decides that it
has come to Ci.

Next, it pushes Ci onto the stack until it comes to the end as marked by the
symbol.

Then D pops the stack to compare with Ci+1.

They are supposed to match except around the head position, where the
difference is dictated by the transition function of M.

Finally, D accepts if it discovers a mismatch or an improper update.

 ∑*\{accepting computation history} if M accepts w
L(D)= .

 ∑* if M rejects w{

PDA D(⬌G) for

⟨M⟩ does not accept w

On input ⟨M,w⟩ generate ⟨G⟩ s.t.
 L(G)=∑* ⬌ M rejects w

If AllCFG is decidable, then so is ATM.

Mapping Reducibility

Computable Functions

Computable Functions

Mapping Reducibility

Mapping Reducibility

Mapping Reducibility

Mapping Reducibility

Mapping Reducibility

Mapping Reducibility

Mapping Reducibility

Turing Reducibility

Turing Reducibility

Turing Reducibility

Turing Reducibility

Turing Reducibility

All languages

Computability Theory
Languages

we can describe

Co-Turing-Rec.

Languages
Tu
rin

g-
Re

c.

La
ng
ua
ge

s

Decidable

Languages

......

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau
Lec. 20-21: Reducibility

