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Theorem: 
 
The Post Correspondence Problem cannot be 
decided by any algorithm (or computer 
program). In particular, no algorithm can 
identify in a finite amount of time some 
instances that have a No outcome. However, if 
a solution exists, we can find it. PCP is Turing-
recognizable.
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Proof Idea: 
 
Reduction - if PCP was decidable then the 
ACCEPTANCE problem would be decidable as well.
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Reducibility

EQCFG = { ⟨G1,G2⟩ | G1,G2 are CFGs and L(G1)=L(G2)}

Let ⟨G2⟩ be such that L(G2)=∑*.   (G2:  R ➝ 𝞮 | 0R | 1R)
⟨G⟩∈ALLCFG ⟺ ⟨G,G2⟩∈EQCFG

EQCFG decidable ⇒ ALLCFG decidable 



ALLCFG decidable ⇒ ATM decidable 
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One branch checks on whether the beginning of the input string is 
C1 and accepts if it isn’t. 

Another branch checks on whether the input string ends with a 
configuration containing the accept state, qaccept, and accepts if it isn’t. 

The third branch is supposed to accept if some Ci does not properly 
yield Ci+1:

It works by scanning the input until it nondeterministically decides that it 
has come to Ci. 

Next, it pushes Ci onto the stack until it comes to the end as marked by the 
# symbol. 

Then D pops the stack to compare with Ci+1.

They are supposed to match except around the head position, where the 
difference is dictated by the transition function of M.

Finally, D accepts if it discovers a mismatch or an improper update.



                                             ∑*\{accepting computation history} if M accepts w
L(D)=                      .

                                                       ∑*              if M rejects w{

PDA D(⬌G) for

⟨M⟩ does not accept w

On input ⟨M,w⟩ generate ⟨G⟩ s.t. 
     L(G)=∑* ⬌ M rejects w


If AllCFG is decidable, then so is ATM.
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