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   b|V|+1 .  
, because b|V|+1 ≥ b|V|+1.
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Reductions 
(& Construction tools)

CFLs are closed under union, concatenation and 
star. If there exists a CFL C s.t. either A*=A’, 
A∪C=A’, A∘C=A’ (but not complement nor 
intersection) or any combinations of these 
operations then A’ is a CFL as long as A is.


If A’ is NON-CFL then so is A.



Reduction example

Consider languages D={ ww | w ∈ {a,b}* }, 
E={ ww | w ∈ {a,b}* and |w|<1000 } and F=D\E.


Since D=E∪F and E is a CFL (a finite and 
regular language), and since D is a NON-CFL 
we conclude that  
       F= { ww | w ∈ {a,b}* and |w|>999 }  
is also a NON-CFL.



Reduction example



COMP-330 
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 13 :  

Pumping Lemma for CFLs


