COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 13 :
Pumping Lemma for CFLs

Announcements wv
EXCEPTIONAL OFFICE HOURS «

On Wednesday (Oct 16) | will be attending an external meeting during most of the day. My
office hours will exceptionally be held from 11:00 to 14:00, same place as usual, McConnell
110N.

Claude

Office Hours «

Posted Oct 11, 2019 6:06 PM
Hi,

As next Monday is a holiday. | will have the OH for next week on Wednesday between
11.30am - 12.30pm.

Regards,

Anirudha

PDA to CFG

PROOF Saythat P = (Q,X, T, 4, go, {qaccept }) and construct G. The variables
of G are {A,q| p,q € Q}. The start variable is 4, Now we describe G’s
rules.

yQaccept *

e For each p,q,r,s € Q, t € ', and a,b € ¥, if §(p, a,) contains (r,t) and

(s, b,t) contains (g, €), put the rule A,, — aA,:bin G.

« For each p,q,r € Q, put the rule A,, — A, A,, in G.

e Finally, for each p € @, put the rule A,, — € in G.

PDA to CFG

cLAIM 2.30

If Ay, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

We prove this claim by induction on the number of steps in the derivation of
x from A,,.

Basis: 'The derivation has [step.

A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side

are A,, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Basis: The derivation has 1 step.
A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side

are A,, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where & > 1,
and prove true for derivations of length k + 1.

Basis: The derivation has 1 step.

A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side
are A,, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where & > 1,
and prove true for derivations of length k + 1.

Suppose that A,, = x with k -+ 1 steps. The first step in this derivation is either
Ay = aA,sbor Ay, = A, A, We handle these two cases separately.

If A, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

In the first case, consider the portion y of z that A, ¢ generates, so z = ayb.
Because A, = y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because A,, — aA,sb is a rule of
(7, 6(p, a, €) contains (r,t) and (s, b, t) contains (g, €), for some stack symbol ¢.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push ¢ onto the stack. Then reading string y can bring it to s and leave ¢
on the stack. Then after reading b it can go to state ¢ and pop ¢ off the stack.
Therefore x can bring it from p with empty stack to g with empty stack.

T

Stack I I
height aH- 7 S b

generated
by Apq

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

If A, generates x, then x can bring P from a state p (with an empty stack) to a
state g (with an empty stack).

In the first case, consider the portion y of z that A, ¢ generates, so z = ayb.
Because A, = y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because A,, — aA,sb is a rule of
(7, 6(p, a, €) contains (r,t) and (s, b, t) contains (g, €), for some stack symbol ¢.
Hence, if P starts at p with an empty stack, after reading a it can go to state r
and push ¢ onto the stack. Then reading string y can bring it to s and leave ¢
on the stack. Then after reading b it can go to state ¢ and pop ¢ off the stack.
Therefore x can bring it from p with empty stack to g with empty stack.

T

Stack I I
height aH- 7 S b

generated
by Apq

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

In the second case, consider the portions y and z of z that A, and A, re-
spectively generate, so z = yz. Because A,, = y in at most k steps and A,, = 2
in at most k steps, the induction hypothesis tells us that y can bring P from p
to r, and z can bring P from r to ¢, with empty stacks at the beginning and

end. Hence can bring it from p with empty stack to ¢ with empty stack. This
completes the induction step.

T

Spack
height _— generated
by qu

Input string

generated generated
by Apr by Arq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

In the second case, consider the portions y and z of z that A, and A, re-
spectively generate, so z = yz. Because A,, = y in at most k steps and A,, = 2
in at most k steps, the induction hypothesis tells us that y can bring P from p
to r, and z can bring P from r to ¢, with empty stacks at the beginning and

end. Hence can bring it from p with empty stack to ¢ with empty stack. This
completes the induction step.

T

Spack
height _— generated
by qu

Input string

generated generated
by Apr by Arq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

PDA to CFG

cLAlM 2.31

If x can bring P from a state p (with an empty stack) to a state g (with an empty
stack), then A,, generates x.

We prove this claim by induction on the number of steps in the computation
of P that goes from p to g with empty stacks on input z.

Basis: 'The computation has 0 steps.
If a computation has 0 steps, it starts and ends at the same state—say, p. So we

must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — €, so the basis is proved.

Basis: 'The computation has 0 steps.
If a computation has 0 steps, it starts and ends at the same state—say, p. So we

must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — €, so the basis is proved.

Induction step: Assume true for computations of length at most k, where & > 0,
and prove true for computations of length k& + 1.

Basis: 'The computation has 0 steps.
If a computation has 0 steps, it starts and ends at the same state—say, p. So we

must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — €, so the basis is proved.

Induction step: Assume true for computations of length at most k, where & > 0,
and prove true for computations of length k& + 1.

Suppose that P has a computation wherein z brings p to ¢ with empty stacks

in k + 1 steps. Either the stack is empty only at the beginning and end of this
computation, or it becomes empty elsewhere, too.

If x can bring P from a state p (with an empty stack) to a state g (with an

empty stack), then 4,, generates x.

T

Stack

height generated

by Apq
Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

T

Stack
height generated
by Apq

Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

the stack is empty only at the begmmng and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

T

Stack
height generated
by Apq

Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

If x can bring P from a state p (with an empty stack) to a state g (with an
empty stack), then 4,, generates x.

the stack is empty only at the beginning and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

. » Foreach p,q,r,s € Q, t € I',and a,b € ¥, if §(p, a, €) contains (r,%) and |
- (s, b,t) contains (g, €), put the rule A,, — aA,sbin G. '

_

T

Stack I I
height arF \—r A b

generated
by Apq

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

the stack is empty only at the begmmng and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then (p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

T

Stack
height generated
by Apq

Input string

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

If x can bring P from a state p (with an empty stack) to a state g (with an
empty stack), then 4,, generates x.

the stack is empty only at the beginning and end

In the first case, the symbol that is pushed at the first move must be the same
as the symbol that is popped at the last move. Call this symbol ¢. Let a be the
input read in the first move, b be the input read in the last move, r be the state
after the first move, and s be the state before the last move. Then d(p, a, €)
contains (r, %) and §(s, b, t) contains (g, €), and so rule A,, — aA,bisin G.

Let y be the portion of x without a and b, so x = ayb. Input y can bring
P from r to s without touching the symbol ¢ that is on the stack and so P can
go from r with an empty stack to s with an empty stack on input y. We have
removed the first and last steps of the £ + 1 steps in the original computation on
z so the computation on y has (k + 1) — 2 = k — 1 steps. Thus the induction
hypothesis tells us that A,s = y. Hence 4,, = z.

StIck | /\X PN

height al

10 generated
by Apg

Input string D
>

generated
by Ars

FIGURE 2.29
PDA computation corresponding to the rule A,; — aA,sb

In the second case, let r be a state where the stack becomes empty other than
at the beginning or end of the computation on z. Then the portions of the
computation from p to r and from r to ¢ each contain at most k steps. Say that

y is the input read during the first portion and z is the mput read durmg the
second portion. The induction hypothesxs tells us that A, = y and A, = 2.
Because rule A,, — A, A, isin G, A,, = z, and the proof is complete.

T

Stack

height _— generated
by Apq

Input string

generated generated
by Apr by Ayq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

it becomes empty elsewhere, too.

In the second case, let r be a state where the stack becomes empty other than
at the beginning or end of the computation on z. Then the portions of the
computation from p to r and from r to ¢ each contain at most k steps. Say that

y is the input read during the first portion and z is the mput read durmg the
second portion. The induction hypothesxs tells us that A, = y and A, = 2.
Because rule A,, — A, A, isin G, A,, = z, and the proof is complete.

T

Stack

height _— generated
by Apq

Input string

generated generated
by Apr by Ayq

FIGURE 2.28
PDA computation corresponding to the rule 4,, — A, A,

PDA vs CFG

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

PDA vs CFG

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

PDA vs CFG

LEMMA 2.217

If a language is context free, then some pushdown automaton recognizes it.

LEMMA 2.27

If a pushdown automaton recognizes some language, then it is context free.

THEOREM 2.20

A language is context free if and only if some pushdown automaton recognizes it.

i

l “ &y by

Regqular
Languages

NON-Regular anguages
via Pumping Lemma via Reductions

"‘NON-CFLs
Reductions

via

=
-
Q
]

Pumpin

via

Pumping Lemma for CFLs

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvxyz satistying the
conditions

1. foreach i > 0, uvizy'z € A,
2. |vy| > 0, and
3. lvzy| < p.

Pumping Lemma for CFLs

Yehoshua Bar-Hillel Micha A. Perles =[] Ellls

FIGURE 2.35
Surgery on parse trees

Pumping Lemma

PROOF Let G be a CFG for CFL A. Let b be the maximum number of symbols
in the right-hand side of a rule. In any parse tree using this grammar we know
that 2 node can have no more than b children. In other words, at most b leaves
are 1 step from the start variable; at most b? leaves are within 2 steps of the start

variable; and at most b" leaves are within h steps of the start variable. So, if

the height of the parse tree is at most h, the length of the string generated is at
most b". Reciprocally, if a generated string is at least b" + 1 long, each of its parse

trees must be at least h + 1 high.

Pumping Lemma

PROOF Let G be a CFG for CFL A. Let b be the maximum number of symbols
in the right-hand side of a rule. In any parse tree using this grammar we know
that 2 node can have no more than b children. In other words, at most b leaves
are 1 step from the start variable; at most b? leaves are within 2 steps of the start
variable; and at most b" leaves are within h steps of the start variable. So, if
the height of the parse tree is at most h, the length of the string generated is at

most b". Reciprocally, if a generated string is at least b" + 1 long, each of its parse
trees must be at least h + 1 high.

Say |V| is the number of variables in G. We set p, the pumping length, to be
pv+1, Now if s is a string in A and its length is p or more, its parse tree must
be at least |V| + 1 high, because b'V+1> p'Vi+1.

FIGURE 2.35
Surgery on parse trees

'To see how to pump any such string s, let 7 be one of its parse trees. If s has
several parse trees, choose 7 to be a parse tree that has the smallest number of
nodes. We know that 7 must be at least [V'| + 1 high, so it must contain a path
from the root to a leaf of length at least |V| 4+ 1. That path has at least |V| + 2
nodes; one at a terminal, the others at variables. Hence that path has at least
|V| + 1 variables. With G having only |V| variables, some variable R appears
more than once on that path. For convenience later, we select R to be a variable
that repeats among the lowest |V'| + 1 variables on this

FIGURE 2.35
Surgery on parse trees

We divide s into uvayz according to Figure 2.35. Each occurrence of R has
a subtree under it, generating a part of the string s. The upper occurrence of R
has a larger subtree and generates vzy, whereas the lower occurrence generates
just « with a smaller subtree. Both of these subtrees are generated by the same
variable, so we may substitute one for the other and still obtain a valid parse tree.
Replacing the smaller by the larger repeatedly gives parse trees for the strings
uv'ry'z at each @ > 1. Replacing the larger by the smaller generates the string
uzrz. That establishes condition 1 of the lemma. We now turn to conditions 2
and 3.

FIGURE 2.35
Surgery on parse trees

'To get condition 2 we must be sure that both v and y are not €. If they were,
the parse tree obtained by substituting the smaller subtree for the larger would
have fewer nodes than 7 does and would still generate s. This result isn’t possible
because we had already chosen 7 to be a parse tree for s with the smallest number
of nodes. That is the reason for selecting 7 in this way.

FIGURE 2.35
Surgery on parse trees

In order to get condition 3 we need to be sure that vy has length at most p.
In the parse tree for s the upper occurrence of R generates vry. We chose R so
that both occurrences fall within the bottom |V'| + 1 variables on the path, and
we chose the longest path in the parse tree, so the subtree where R generates
vy 1s at most |V + 1 high. A tree of this height can generate a string of length
at most bkl =p,

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A ot
length at least p, then s may be divided into five pieces s = uvxyz satistying the
conditions

1. for each i > 0, uv'zy'z € A,
2. |vy] > 0, and
3. |oxy| < p.

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvayz satistying the
conditions

1. foreach i > 0, uvizy'z € A,
2. |vy] > 0, and

3. |ozy| < p.

R T e 2 1 2 T T 7 S ——

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvayz satistying the
conditions

1. for each i > 0, uvizy'z € A,
2. |vy] > 0, and
3. |ozy| < p.

R T e 2 1 2 T T 7 S ——

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvayz satistying the
conditions

1. for each i > 0, uvizy'z € A,
2. |vy] > 0, and
3. |ozy| < p.

R T e 2 1 2 T T 7 S ——

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvxyz satistying the
conditions

1. foreach i > 0, uvizy'z € A,
2. |vy] > 0, and
3. |v:r.y| < p.

o Ae(CIFIL :

Vp3seA, Is|2p, Yuvxyz=s s.t. [vyl|>0,Ivxyl<p,
then 3i20 s.t. s'=uvixyiz¢A.
= AZCIFL

NON-CFLs

EXAMPLE 2.36

Use the pumping lemma to show that the language B = {a"b"c"| n > 0} is not

context free.
We assume that B is a CFL and obtain a contradiction. Let p be the pumping

length for B that is guaranteed to exist by the pumping lemma. Select the string
s = aPbPcP. Clearly s is a member of B and of length at least p. The pumping
lemma states that s can be pumped, but we show that it cannot. In other words,
we show that no matter how we divide s into uvxryz, one of the three conditions

of the lemma is violated.

NON-CFLs

First, condition 2 stipulates that either v or y is nonempty. Then we consider
one of two cases, depending on whether substrings v and y contain more than

one type of alphabet symbol.

1. When both v and y contain only one type of alphabet symbol, v does not
contain both a’s and b’s or both b’s and c¢’s, and the same holds for y. In
this case the string uv?zy?z cannot contain equal numbers of a’s, b’s, and
c’s. Therefore it cannot be a member of B. That violates condition 1 of
the lemma and is thus a contradiction.

2. When either v or y contain more than one type of symbol uv?zy?z may
contain equal numbers of the three alphabet symbols but not in the correct
order. Hence it cannot be a member of B and a contradiction occurs.

NON-CFLs

One of these cases must occur. Because both cases result in a contradiction, a
contradiction is unavoidable. So the assumption that B is a CFL must be false.

Thus we have proved that B is not a CFL.

NON-CFLs

EXAMPLE 2.37

Let C = {a'b’c*|0 < i < j < k}. We use the pumping lemma to show that C'is
not a CFL. This language is similar to language B in Example 2.36, but proving
that it is not context free is a bit more complicated.

Assume that C' is a CFL and obtain a contradiction. Let p be the pumping
length given by the pumping lemma. We use the string s = aPbPc? that we
used earlier, but this time we must “pump down” as well as “pump up.” Let
s = uvxyz and again consider the two cases that occurred in Example 2.36.

NON-CFLs

s = uvzyz and again consider the two cases that occurred in Example 2.36.

1. When both v and y contain only one type of alphabet symbol, v does not
contain both a’s and b’s or both b’s and ¢’s, and the same holds for y. Note
that the reasoning used previously in case 1 no longer applies. The reason
is that C contains strings with unequal numbers of a’s, b’s, and c’s as long

as the numbers are not decreasing. We must analyze the situation more
carefully to show that s cannot be pumped. Observe that because v and
y contain only one type of alphabet symbol, one of the symbols a, b, or c
doesn’t appear in v or y. We further subdivide this case into three subcases
according to which symbol does not appear.

NON-CFLs

a. The a’s do not appear. Then we try pumping down to obtain the string
wv92y’z = uxz. That contains the same number of a’s as s does, but
it contains fewer b’s or fewer c’s. Therefore it is not a member of C,
and a contradiction occurs.

The b’s do not appear. 'Then either a’s or ¢’s must appear in v or y be-

cause both can’t be the empty string. If a’s appear, the string uv*zy*z
contains more a’s than b’s, so it 1s not in C. If ¢’s appear, the string
uv’zy®z contains more b’ than c’s, so it is not in C. Either way a
contradiction occurs.

The c’s do not appear. Then the string uv?zy?z contains more a’s or
more b’s than c’s, so it is not in C, and a contradiction occurs.

NON-CFLs

2. When either v or y contain more than one type of symbol, uv*zy?z will
not contain the symbols in the correct order. Hence it cannot be a member
of C, and a contradiction occurs.

Thus we have shown that s cannot be pumped in violation of the pumpmg
lemma and that C is not context free.

NON-CFLs

EXAMPLE 2.38

Let D = {ww| w € {0,1}*}. Use the pumping lemma to show that D is not a
CFL. Assume that 7 is a CFL and obtain a contradiction. Let p be the pumping
length given by the pumping lemma.

This time choosing string s is less obvious. One possibility is the string
0P10P1. It is a member of D and has length greater than p, so it appears to

be a good candidate. But this string can be pumped by dividing it as follows, so
it is not adequate for our purposes.

0F1
O 1 0 000---0001
N N N N’
r Yy 2

NON-CFLs

Let’s try another candidate for s. Intuitively, the string 0P1P0P1? seems to
capture more of the “essence” of the language D than the previous candidate
did. In fact, we can show that this string does work, as follows.

We show that the string s = 0P1P0P1? cannot be pumped. This time we use
condition 3 of the pumping lemma to restrict the way that s can be divided. It
says that we can pump s by dividing s = uvzyz, where |vzy| < p.

NON-CFLs

First, we show that the substring vy must straddle the midpoint of s. Other-
wise, if the substring occurs only in the first half of s, pumping s up to uv?zy?=z
moves a 1 into the first position of the second half, and so it cannot be of the
form ww. Similarly, if vzy occurs in the second half of s, pumping s up to

uv?zy®z moves a 0 into the Jast position of the first half, and so it cannot be of
the form ww.

But if the substring vzy straddles the midpoint of s, when we try to pump s
down to uzz it has the form 0P1'071P, where 4 and j cannot both be p. This
string is not of the form ww. Thus s cannot be pumped, and D is not a CFL.

Reductions
(& Construction tools)

® CFLs are closed under union, concatenation and
star. If there exists a CFL C s.t. either A*=A,

AUC=A, AoC=A (but not complement nor

intersection) or any combinations of these
operations then A is a CFL as long as A is.

@ If A is NON-CFL then so is A.

Reduction example

@ Consider languages D={ ww | w € {a,b}* },
E={ ww | we {a,b}* and |wl|<1000 } and F=D\E.

® Since D=EuF and E is a CFL (a finite and

regular language), and since D is a NON-CFL
we conclude that

F= { ww | we{a,b}* and |w|>999 }
IS also a NON-CFL.

Reduction example

. Let C be a context-free language and R be a regular language. Prove that
the language C' N R is context free.

. Use part (a) to show that the language A = {w| w € {a,b,c}* and contains
equal numbers of a’s, b’s, and ¢’s} is not a CFL.

2.18 (a) Let C be a context-free language and R be a regular language. Let P be the
PDA that recognizes C, and D be the DFA that recognizes R. If Q is the set of
states of P and @’ is the set of states of D, we construct a PDA P’ that recognizes
C N R with the set of states @ x Q. P’ will do what P does and also keep track of
the states of D. It accepts a string w if and only if it stops at a state ¢ € Fp x Fp,
where Fp is the set of accept states of P and Fp is the set of accept states of D.
Since C' N R is recognized by P’, it is context free.

(b) Let R be the regular language a*b*c*. If A were a CFL then A N R would be
a CFL by part (a). However, AN R = {a"b"c"| n > 0}, and Example 2.36 proves
that A N R is not context free. Thus A is not a CFL,

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crepeau

Lec. 13 :
Pumping Lemma for CFLs

