
COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 13 :  

Pumping Lemma for CFLs

PDA to CFG

PDA to CFG

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

y
x

a b

⟻ pushing t poping t ⟼

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

y
x

a b

⟻ pushing t poping t ⟼

y z

x

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

y z

x

If Apq generates x, then x can bring P from a state p (with an empty stack) to a
state q (with an empty stack).

PDA to CFG

If x can bring P from a state p (with an empty stack) to a state q (with an empty
stack), then Apq generates x.

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

y
x

a b

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

⟻ pushing t poping t ⟼

y
x

a b

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

⟻ pushing t poping t ⟼

y
x

a b

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

⟻ pushing t poping t ⟼

y
x

a b

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

⟻ pushing t poping t ⟼

y
x

a b

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

⟻ pushing t poping t ⟼

y
x

a b

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

⟻ pushing t poping t ⟼

y

x

z

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

y

x

z

If x can bring P from a state p (with an empty stack) to a state q (with an
empty stack), then Apq generates x.

PDA vs CFG

PDA vs CFG

PDA vs CFG

PDA vs CFG

All languages

Computability Theory

Decidable

 Languages

Context-free

Languages

Regular

Languages

Languages we can describe

NON-Regular Languages

via Pumping Lemma

NON-Regular

Languages

via Reductions

All languages

Computability Theory

Decidable

 Languages

Context-free

Languages

Languages we can describe

NON-CFLs

via Pumping Lemma

NON-CFLs

via Reductions

Regular

Languages

Pumping Lemma for CFLs

Pumping Lemma for CFLs

Yehoshua Bar-Hillel Eli ShamirMicha A. Perles

Pumping Lemma

Reciprocally,

Pumping Lemma

Reciprocally,

 b|V|+1 .
, because b|V|+1 ≥ b|V|+1.

Pumping
Lemma

Pumping
Lemma

Pumping
Lemma

Pumping
Lemma

b|V|+1 = p.
|V| + 1

g

| |
| |

A∈ℂ𝔽𝕃 ⟹ 
∃p∀s∈A, |s|≥p, ∃uvxyz=s st 1,2,3=true.

| |
| |

A∈ℂ𝔽𝕃 ⟹ 
∃p∀s∈A, |s|≥p, ∃uvxyz=s st 1,2,3=true.

∀p∃s∈A, |s|≥p, ∀uvxyz=s [1 or 2 or 3 = false].  
⟹ A∉ℂ𝔽𝕃

| |
| |

A∈ℂ𝔽𝕃 ⟹ 
∃p∀s∈A, |s|≥p, ∃uvxyz=s st 1,2,3=true.

∀p∃s∈A, |s|≥p, ∀uvxyz=s [1 or 2 or 3 = false].  
⟹ A∉ℂ𝔽𝕃

∀p∃s∈A, |s|≥p, ∀uvxyz=s st 2,3=true [1=false]. 
⟹ A∉ℂ𝔽𝕃

| |
| |

A∈ℂ𝔽𝕃 ⟹ 
∃p∀s∈A, |s|≥p, ∃uvxyz=s st 1,2,3=true.

∀p∃s∈A, |s|≥p, ∀uvxyz=s s.t. |vy|>0,|vxy|<p,  
then ∃i≥0 s.t. s’=uvixyiz∉A. 

⟹ A∉ℂ𝔽𝕃

∀p∃s∈A, |s|≥p, ∀uvxyz=s [1 or 2 or 3 = false].  
⟹ A∉ℂ𝔽𝕃

∀p∃s∈A, |s|≥p, ∀uvxyz=s st 2,3=true [1=false]. 
⟹ A∉ℂ𝔽𝕃

| |
| |

NON-CFLs

NON-CFLs

NON-CFLs

NON-CFLs

NON-CFLs

NON-CFLs

NON-CFLs

NON-CFLs

NON-CFLs

NON-CFLs

Reductions
(& Construction tools)

CFLs are closed under union, concatenation and
star. If there exists a CFL C s.t. either A*=A’,
A∪C=A’, A∘C=A’ (but not complement nor
intersection) or any combinations of these
operations then A’ is a CFL as long as A is.

If A’ is NON-CFL then so is A.

Reduction example

Consider languages D={ ww | w ∈ {a,b}* },
E={ ww | w ∈ {a,b}* and |w|<1000 } and F=D\E.

Since D=E∪F and E is a CFL (a finite and
regular language), and since D is a NON-CFL
we conclude that  
 F= { ww | w ∈ {a,b}* and |w|>999 }  
is also a NON-CFL.

Reduction example

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 13 :  

Pumping Lemma for CFLs

