
COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 10 : Context-Free

Grammars

Let’s call the following grammar G1 :  
 
 A → 0A1  
 A → B  
 B → #

Derivation of a string “000#111” : 
 
A⇒0A1⇒00A11⇒000A111⇒000B111⇒000#111.

Context-Free Grammars

Variables

Alphabet (of terminals)

Substitution Rules

Start Variable

Definition of CFG

0, 1, #

A, B, C, ⟨TERM⟩, ⟨EXPR⟩

A → 0A1
⟨EXPR⟩ → ⟨TERM⟩

A
(left-hand side of the first substitution rule)

Definition of CFG

Parse Tree

Definition of CFL

If u, v and w are strings of variables and
terminals, and A → w is a rule of the
grammar, we say that uAv yields uwv, written
uAv⇒uwv.

We say that u derives v (u⇒*v) if u=v or if  
 u⇒u1⇒u2⇒...⇒uk⇒v, k≥0.

The language of G is { w∈∑* | S⇒*w }.

Context-Free Grammars

Formally, grammar G1 :  
 
 V = {A,B}  
 ∑ = {0,1,#}  
 R = {A → 0A1 | B,  
 B → #}  
 S = A

L(G1) = { 0n#1n | n≥0 }.

Example of CFG
G2=( 
 { ⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩, 
 ⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩ },  
 {a,b,c,…,z," "},  
 R2, 
 ⟨SENTENCE⟩ 
)
R2:

Example of CFG

Rules of

grammar G2 :

Example of CFG
 ⟨ARTICLE⟩ → a | the

means

 ⟨ARTICLE⟩ → a

 ⟨ARTICLE⟩ → the

Rules of

grammar G2 :

*

Regular Operations :
Kleene’s theorem (CFG)

Regular Operations :
Kleene’s theorem (CFL)

CFLs

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA and
GB=(VB,∑,RB,SB) be a CFG generating LB (VA∩VB=∅).

Consider

- GU=({SU}∪VA∪VB,
- ∑,
- {SU → SA | SB}∪RA∪RB,
- SU).

LU = LA ∪ LB.

Kleene’s
theorem (CFL)

 V = {A,B}  
 ∑ = {0,1,#}  
 R1 = {A → 0A1 | B,  
 B → #}  
 S = A

R2:G1:

Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1 and 
G2=({ ⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩,
⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩ },
{a,b,c,…,z," "}, R2 ,⟨SENTENCE⟩) be a CFG generating L2.

Let GU=(
- {SU,A,B,⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩,

⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩},
- {0,1,#,a,b,c,…,z," "},
- {SU → A | ⟨SENTENCE⟩}∪R1∪R2,
- SU).

LU = L1 ∪ L2.

 V = {A,B}  
 ∑ = {0,1,#}  
 R1 = {A → 0A1 | B,  
 B → #}  
 S = A

R2:G1:

Regular Operations :
Kleene’s theorem (CFL)

CFLs

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA and
GB=(VB,∑,RB,SB) be a CFG generating LB (VA∩VB=∅).

Consider GC=(
- {SC}∪VA∪VB ,

- ∑,

- {SC → SASB}∪RA∪RB,

- SC).
LC = LA∘LB.

Kleene’s
theorem (CFL)

 V = {A,B}  
 ∑ = {0,1,#}  
 R1 = {A → 0A1 | B,  
 B → #}  
 S = A

R2:G1:

Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1 and 
G2=({ ⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,⟨PREP-PHRASE⟩,
⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,⟨VERB⟩,⟨PREP⟩ },
{a,b,c,…,z," "}, R2 ,⟨SENTENCE⟩) be a CFG generating L2.

Let GC=({SC,A,B,⟨SENTENCE⟩,⟨NOUN-PHRASE⟩,⟨VERB-PHRASE⟩,
⟨PREP-PHRASE⟩,⟨CMPLX-NOUN⟩,⟨CMPLX-VERB⟩,⟨ARTICLE⟩,⟨NOUN⟩,
⟨VERB⟩,⟨PREP⟩}, {0,1,#,a,b,c,…,z," "},  
{ SC → A⟨SENTENCE⟩ }∪R1∪R2,SC).

LC = L1 ∘ L2.

 V = {A,B}  
 ∑ = {0,1,#}  
 R1 = {A → 0A1 | B,  
 B → #}  
 S = A

R2:G1:

Regular Operations :
Kleene’s theorem (CFL)

CFLs

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

- ∑,

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

- ∑,

- {SS → 𝞮 | SASS}∪RA,

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

- ∑,

- {SS → 𝞮 | SASS}∪RA,

- SS).

Kleene’s
theorem (CFL)

Let GA=(VA,∑,RA,SA) be a CFG generating LA.

Consider GS=(
- {SS}∪VA ,

- ∑,

- {SS → 𝞮 | SASS}∪RA,

- SS).
LS = (LA)*.

Kleene’s
theorem (CFL)

 V = {A,B}  
 ∑ = {0,1,#}  
 R1 = {A → 0A1 | B,  
 B → #}  
 S = A

G1:

Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1.

 V = {A,B}  
 ∑ = {0,1,#}  
 R1 = {A → 0A1 | B,  
 B → #}  
 S = A

G1:

Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1.

Let G1=({A,B},{0,1,#},R1,A) be a CFG generating L1.

Let  
GS=({SS,A,B},  
 {0,1,#},  
 { SS → 𝞮 | ASS, A → 0A1 | B, B → #},  
 SS).

LS = (L1)*.

 V = {A,B}  
 ∑ = {0,1,#}  
 R1 = {A → 0A1 | B,  
 B → #}  
 S = A

G1:

Construction tools
(and Reductions)

CFLs are closed under union, concatenation and
star. If there exists a CFL C s. t. either A*=A’,
A∪C=A’, A∘C=A’ 
 (but neither complement nor intersection) 
or any combinations of these operations then A’ is
a CFL as long as A is.  
 
(If A’ is NON-CFL then so is A.)

Construction tools

Constructing a CFG for a regular language L: 
M = (Q={q0,q1,...,qk},∑,δ,q0,F) is converted to  
G = (V={R0,R1,...,Rk},∑,R,S=R0) where

R contains rule Ri → aRj for each δ(qi,a) = qj
in M, and rule Ri → 𝞮 for each accept-state
qi∈F.

R0 is the start variable.

0 MOD 3 (base 2)
M3,2

1

q0

0

1
0

1
q1

q2

0

M3,2 stops in state qr ⟺ w = r mod 3

M3,2

1

q0

0

1
0

1
q1

q2

0

M3,2 = (Q={q0,q1,q2},{0,1},δ,q0,F) is converted to  
G3,2 = (V={R0,R1,R2},{0,1},R,S=R0) where

R: R0 → 0R0 | 1R1 | 𝞮  
 R1 → 0R2 | 1R0 

 R2 → 0R1 | 1R2

extra EXAMPLE of CFG

extra EXAMPLE of CFG

Ambiguity in CFGs

Leftmost Derivation
A derivation is Leftmost if every time a variable
is substituted, it is always the leftmost variable.

E

X

A

M

P

L

E

Ambiguity

A string w is derived ambiguously by a CFG
G if it has two or more distinct leftmost
derivations. Grammar G is ambigious if it
generates some string ambiguously.

Ambiguous version of
example 2.4

G5

Ambiguous CFG

Ambiguity

Ambiguity is not desirable in CFG because it
may lead to unexpected interpretations of a
string, for instance in the context of arithmetic
expressions or programming languages.

However, some languages are inherently
ambiguous, meaning that all grammars
generating this language must be ambiguous.

example : {aibjck | i=j or j=k}

Chomsky Normal Form
Noam Chomsky

Chomsky Normal Form

Chomsky Normal Form

Chomsky Normal Form

157

Proof:

Proof:

First, we add a new start variable S0 and the
rule S0 → S, where S was the original start
variable.

Chomsky Normal Form

Second, we take care of all 𝞮-rules. We
remove an 𝞮-rule "A → 𝞮", where A is not
the start variable.

Then for each occurrence of A on the right-
hand side of a rule we add a new rule with
that occurrence deleted.

Accordingly, each rule "R → A" is replaced by
"R → 𝞮" unless it has been already removed.

Chomsky Normal Form

Third, we handle all unit rules by removing
each unit rule A → B.

In consequence whenever B → u appears, we
add the rule A → u unless this is a unit rule
previously removed.

Chomsky

Normal Form

Finally, we convert all remaining rules as
follows: A → u1u2...uk for k>2, where each ui
is a variable or terminal with a series of
rules A → u1A1, A1 → u2A2,..., Ak-2 → uk-1uk
where each Ai is a new variable.

When k=2, and A → u1u2, we may replace
any terminal ui by a variable Ui and the rule
Ui → ui.

Chomsky

Normal Form

Chomsky

Normal Form

COMP-330
Theory of Computation

Fall 2019 -- Prof. Claude Crépeau  
Lec. 10 : Context-Free

Grammars

