
Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 26, April 14, 2016

REVIEW SESSION

Comp 250: Final examination - VERSION #3

Instructor: Claude Crépeau

April 28th, 2016, 14:00 - 17:00

NAME:

STUDENT ID:

NOTE: DO NOT ANSWER ON THIS COPY.

• This is a multiple choices exam. For each question, only one answer can be provided.

• Answer the questions on the multiple choice page, using a LEAD PENCIL.

• You have 180 minutes to write the exam.

• This exam is worth 50% of your total mark.

• ALL DOCUMENTATION IS PERMITTED including books, notes and printed slides.

• No electronic devices are allowed.

• If you believe that none of choices provided for a given question are correct, provide the
answer that is the closest to being correct.

• This exam contains 40 questions on 16 pages.

• This examination is printed on both sides of the paper.

• THIS EXAMINATION PAPER MUST BE RETURNED.

• The Examination Security Monitor Program detects pairs of students with unusually similar
answer patterns on multiple-choice exams. Data generated by this program can be used as
admissible evidence, either to initiate or corroborate an investigation or a charge of cheating
under Section 16 of the Code of Student Conduct and Disciplinary Procedures.

1

Comp 250: Final examination - VERSION #3

Instructor: Claude Crépeau

April 28th, 2016, 14:00 - 17:00

NAME:

STUDENT ID:

NOTE: DO NOT ANSWER ON THIS COPY.

• This is a multiple choices exam. For each question, only one answer can be provided.

• Answer the questions on the multiple choice page, using a LEAD PENCIL.

• You have 180 minutes to write the exam.

• This exam is worth 50% of your total mark.

• ALL DOCUMENTATION IS PERMITTED including books, notes and printed slides.

• No electronic devices are allowed.

• If you believe that none of choices provided for a given question are correct, provide the
answer that is the closest to being correct.

• This exam contains 40 questions on 16 pages.

• This examination is printed on both sides of the paper.

• THIS EXAMINATION PAPER MUST BE RETURNED.

• The Examination Security Monitor Program detects pairs of students with unusually similar
answer patterns on multiple-choice exams. Data generated by this program can be used as
admissible evidence, either to initiate or corroborate an investigation or a charge of cheating
under Section 16 of the Code of Student Conduct and Disciplinary Procedures.

1

Winter 2016
COMP-250: Introduction 

to Computer Science
Lectures 1-26, January-April, 2016

Algorithms
Informal definition 
 
An algorithm is the specification of a
sequence of instructions to be carried out by
a processor.

13-09-02

1

Welcome to COMP 250
Introduction to Computer Science!

Mathieu Blanchette

My work as a researcher

Algorithms
•  A systematic and unambiguous procedure that

produces - in a finite number of steps - the
answer to a question or the solution of a problem.

•  Algorithms can be run on a computer, but they
don�t have to:
–  Mayas had algorithms to predict solar eclipses centuries

in advance
–  Egyptians had algorithms to build pyramids
–  Indians had algorithms for factorizing polynomials
–  Greeks had algorithms to build all kinds of geometric

construction using only a compass and straight lines.

Compass and straight-line construction
•  Problem: Angle bisection
 INPUT: An angle defined by three points AOB
 OUTPUT: A point C such that AOC = BOC
•  Algorithm:
–  Draw circle centered at O to find A� and B�
–  Draw circles centered at A� and B�

 of the same radius to find C
–  Then AOC and BOC bisect AOB

A

O

B

A�

B�

C

Problem: Butterfly Origami

INPUT: 2:1 rectangle

OUTPUT: A butterfly

Problem: Chickpea cooking

INPUT: Ingredients (left)

OUTPUT: Yummy (but spicy!)

1

Music SCORE
1

Assembly Instruction

LEGO (RoboArm (Machine)) instructions

1

Computer Program

C program

1

Fight around 1503 about calculation method

1

Smart phones

/ Blu-ray

1

1

Computer Science

Computer Science is the study of algorithms
for computing machines.

(Formal) Definition of an Algorithm 
 
A well-ordered collection of unambiguous
effectively computable operations that when
executed produces a result and halts in a
finite amount of time.

1

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 2, January 14, 2016

2

Grade School Algorithms

+ =

Representation quite inefficient
"+" easy to describe

2

X =

Grade School Algorithms

Representation quite inefficient
"X" easy to describe

2

Grade School Algorithms
2

Grade School Algorithms

6862

1000

2

Grade School Algorithms

carry ← 0
for i ← 0 to N−1 do
 r[i]←R[a[i],b[i],carry]
 carry←L[a[i],b[i],carry]
end for
r[N]←carry

2

Grade School Algorithms
2

Grade School Algorithms

3 + 9
————
12

A
B

E D

Grade School Algorithms

C

=(A+B+C) % 𝛃(A+B+C) / 𝛃 =

𝛃 𝛃-git
𝛃-gits

2

Grade School Algorithms

𝛃

𝛃
𝛃

𝛃-git
𝛃-gits

2

Subtraction

6
—

2

Grade School Algorithms

1824

6
—

1315

2

Grade School Algorithms
2

Grade School Algorithms

6
3a[i]

b[j]

8tmp[j][i+j]

2

Multiplication
2

Multiplication
2

𝛃
𝛃

𝛃

𝛃
𝛃

Multiplication
2

Long Division
2

Grade School Algorithms
2

Grade School Algorithms

57638372

 50

41672542996 / 723 = 57638372
41672542996 % 723 = 50 .

2

Analysis of Addition

{cst

{cst

{cst{linear

Time(N) = c1 + c2⨯N

3

Analysis of Multiplication

{cst

{cst

{cst{linear{quadratic
3

{quadratic
Analysis of Multiplication

{cst

{cst

cst{

l
i
n
e
a
r{

{cst

{cst

3

Time(N) = c1 + c2⨯N + c3⨯N2

Analysis of Algorithms
3

Analysis of Algorithms

Time(N) = c1 + c2⨯N + c3⨯N2

Time(N) = c1 + c2⨯N

Multiplication

Addition

3

Analysis of Algorithms

Time(N) is O(N2)

Time(N) is O(N)

Multiplication

Addition

3

Analysis of Algorithms

Multiplication

Addition

Unary
Representation

Decimal/binary
Representation

50x
x2
2x

3

Today, the best known Multiplication
algorithm has running time

O(N⨯2log* N)
barely slower than Addition…
(log* N = number of log until < 1)

Analysis of Algorithms

Addition

50x
x2
2x

Multiplication
Multiplication
Multiplication
Multiplication

Multiplication

3

Base 8 vs Base 2

=(????)2

(2143)8

3

=(010 001 100 101)2
=(10001100101)2

(2143)8

Base 8 vs Base 2
3

20=1 21=2 22=4
23=8 24=16 25=32
26=64 27=128 28=256
29=512 210=1024 211=2048
212=4096 213=8192 214=16384
215=32768 216=65536
232 = 4 294 967 296

Powers of 2 in Base 10
3

100=1
101=1010
102=1100110
103=1111101000 ≈210
104=10011100010000

Powers of 10 in Base 2
3

to Base 2
3

to Base 2

𝛃

𝛃
𝛃

𝛃

3

26.375
=(11010.____)2

0.375
=1/4+1/8
=(0.011)2

26.375
=(11010.011)2

Fractional Numbers
4

More Binary
Representation

4

Representation
4

Representation
4

A Byte

10100110

4

A Byte

10100110
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00010110
00000000
00000000
00000000
00000000
00000000

4

An address

10100110
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00010110
00000000
00000000
00000000
00000000
00000000

4

A (32-bit) address

10100110
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000 00000000 00010110

4

A (64-bit) address

10100110
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000
00000000
00000000
00000000

00000000 00000000 00000000
00000000 00000000 00000000 00010110

4

10100110
00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000

00000000

00000000

Float

Double

Byte

Char

Short

Int

Long

Java Primitive Types
Boolean

4

(32-bit) addresses

10100110

00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000

00000000
00000000
00000000

00000000 00000000 00010010
00000000 00000000 00000000 00101010

4

10100110
00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000
00000000

00000000

00000000

Address

Address

Java Reference Types

32-Bit

64-Bit

4

byte[] a;

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000
00000000
00000000

00000000 00000000 00000000a:

00000000

00000000

00000000

00000000

0000000000000000

00000000

00000000 000000000000000000000000

4

00000000 000000000000000000000000

a=new byte[3];

00000000

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000

00000000
00000000
00000000

00000000 00000000 00010010a:

00000000 00000000
0000000000000000

4

00000000 000000000000000000000000

a[0]=166;

10100110

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000

00000000
00000000
00000000

00000000 00000000 00010010a:

00000000 00000000
0000000000000000

4

int[] b;

10100110

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000

00000000
00000000
00000000

00000000 00000000 00010010a:

00000000 00000000
0000000000000000

00000000 00000000 00000000 00000000b:

4

b=new int[2];

10100110

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000

00000000
00000000
00000000

00000000
00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000

00000000

00000000

00000000
00000000
00000000

00000000 00000000 00010010a:

00000000 00000000
0000000000000000

00000000 00000000
0000000000000000

00000000 00000000 00000000 00101010b:

4

b[1]=-1;

10100110

00000000
00000000
00000000

11111111
00000000

00000000

00000000
00000000

00000000
00000000
00000000

11111111
00000000

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

11111111

00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

11111111

00000000

00000000

00000000
00000000
00000000

00000000 00000000 00010010a:

00000000 00000000
0000000000000000

00000000 00000000
0000000000000000

00000000 00000000 00000000 00101010b:

4

Sorting

http://tech-algorithm.com/articles/insertion-sort

5

}cst

}cst

}cst

}cst∼linear}
l
i
n
e
a
r
∼q
u
a
d
r
a
t
i
c

Analysis of Insertion Sort
5

Time(N) ≥ c1 + c2⨯N

Analysis of Insertion Sort

}cst

}cst

}cst

}cst}l
i
n
e
a
r

5

}cst

}cst

}cst

}linear}q
u
a
d
r
a
t
i
c

Analysis of Insertion Sort

Time(N) ≤ c1 + c2⨯N + c3⨯N2

5

Analysis of Algorithms

Time(N) is O(N2)

Time(N) is 𝜴(N)

Worst Case

Best Case

5

List = ordered set of elements.

(a0,a1,…,aSize-1)

Size = number of elements.

Linked Lists
5

Array of integers:

Array of shapes:

0 1 2 3 4 5 6 7

[5,2,9,3,3,1,7,0]

0 1 2 3 4 5 6 7

[•,•,•,•,•,•,•,⊠]

5

Adding element to Front
5

Removing element at Front

5

Adding/Removing at End

5

Array of shapes:

Linked list of shapes:

Size=5

0 1 2 3 4 5 6 7

[•,•,•,•,•,⊠,⊠,⊠]

|•,•| |•,•| |•,•| |•,•| |•,⊠|

5

(Singly) Linked List Node

element next

|•,•|

5

5

|•,•| |•,•| |•,•| |•,•| |•,⊠|

head tail size

|•,•,5|

5

|•,•| |•,•| |•,•| |•,•| |•,⊠|

|•,⊠|
head tail size

 •,•,5|6

newNode

|•|

•

5

|•,•| |•,•| |•,•| |•,•| |•,⊠|

head tail size

|•,•,5|

tmp

|•|

⊠

4

5

|•,•| |•,•| |•,•| |•,•| |•,⊠|

|•,⊠|
head tail size

 •,•,5|6

•

newNode

|•|

5

5

|•,⊠|

head tail size

|•,•,1|0⊠ ⊠

5

|•,•| |•,•| |•,•| |•,•| |•,⊠|

head tail size

|•,•,5|

tmp

|•|

⊠

4

5

Java Generics

element next

|_,•|

6

Java Generics
6

Java Generics
6

(Doubly) Linked List Node

element next prev

|9,•,•|

6

 |•,•,⊠| |•,•,•| |•,•,•| |•,⊠,•|

head tail size

|•,•,4|

6

 |•,•,⊠| |•,•,•| |•,•,•| |•,⊠,•|

head tail size

|•,•,4|

6

 |•,•,⊠| |•,•,•| |•,•,•| |•,⊠,•|

head tail size

|•,•,4|

6

 |•,•,⊠| |•,•,•| |•,•,•| |•,⊠,•|

head tail size

|•,•,4|

node

|•|
3

⊠ ⊠

 |⊠,•,⊠| |•,•,•| |•,•,•| |⊠,⊠,•|

dummy dummy .
Head Tail size

|•,•,2|

6

 |⊠,•,⊠| |•,•,•| |•,•,•| |⊠,⊠,•|

head tail size

|•,•,2|

node

|•|
1

⊠ ⊠

6

Array vs Linked List
6

Linked List operations
6

 |⊠,•,⊠| |•,•,•| |•,•,•| |⊠,⊠,•|

dummy dummy .
Head Tail size

|•,•,2|

Java LinkedList

• implemented as doubly linked list 
(with dummies)

• Node class is private

6

Java LinkedList

}expensive

 |⊠,•,⊠| |•,•,•| |•,•,•| |⊠,⊠,•|

|•,•,2|

6

Java LinkedList

Time(n) is 𝜴(n2)

 |⊠,•,⊠| |•,•,•| |•,•,•| |⊠,⊠,•|

|•,•,2|

6

 |•,•,•,•|

array size cap.

|•,4,4|

Java ArrayList

• implementation using arrays of
growing sizes

• cannot access using a[i] notation

6

LinkedList vs ArrayList
6

ADTs

• An Abstract Data Type is an abstraction of a
data structure: no coding is involved.

• The ADT specifies: 
- what can be stored in it 
- what operations can be done on/by it.

• There are lots of formalized and
standardized ADTs (in Java).

7

ADTs
• For example, if we are going to model a bag

of marbles as an ADT, we could specify that 
- this ADT stores marbles 
- this ADT supports putting in a marble and
getting out a marble.

• In this course we are going to learn a lot of
different standard ADTs. (stacks, queues,
trees...)

• (A bag of marbles is not one of them.)

7

Stack
• A stack is a container of objects that are

inserted and removed according to the
last-in-first-out (LIFO) principle.

• Objects can be inserted at any time, but
only the last (the most-recently inserted)
object can be removed.

• Inserting an item is known as “pushing”
onto the stack.

• “Popping” off the stack is synonymous with
removing an item.

7

Stack
• A stack is an ADT that supports two main methods: 

- push(o): Inserts object o onto top of stack 
- pop(): Removes the top object of stack and returns it; 
if the stack is empty then an error occurs.

• The following support methods should also be
defined: 
- size(): returns the number of objects in stack 
- isEmpty(): returns a boolean indicating if stack is empty. 
- top(): returns the top object of the stack, without
removing it; if the stack is empty then an error occurs.

7

Examples:
7

Examples:
7

Examples:
7

Examples:

3 + (4 - 1)* 7 + (6 - 2 * (2 + 3))

7

3 + (4 - 1)* 7 + (6 - 2 * (2 + 3))

24

(
 +

24
6
24

(
 +

-
(
 +

6
24

-
(
 +

2
6
24

2
6
24

*
-
(
 +

(
*
-
(
 +

2
6
24

2
2
6
24

(
*
-
(
 +

+
(
*
-
(
 +

2
2
6
24

3
2
2
6
24

+
(
*
-
(
 +

*
-
(
 +

5
2
6
24

10
6
24

-
(
 + + +

-4
24

__

20

7

t=gettoken()
while type(t)≠eol do
 if type(t)=number then
 if type(t)=operator then
 if t="(" then
 if t=")" then
 t=gettoken()

while not isemptyO() do
 op=popO()
 arg2=popA()
 arg1=popA()
 pushA(exec(arg1,op,arg2))
return popA()

Processing arithmetics
7

 if type(t)=number then pushA(t)

 if type(t)=operator then
 if prio(t)≤prio(topO())
 then op=popO()
 arg2=popA()
 arg1=popA()
 pushA(exec(arg1,op,arg2))
 pushO(t)

Processing arithmetics
7

 if t="(" then pushO(t)

 if t=")" then
 op=popO()
 while op≠"(" do
 arg2=popA()
 arg1=popA()
 pushA(exec(arg1,op,arg2))
 op=popO()

Processing arithmetics
7

t=gettoken()
while type(t)≠eol do
 if type(t)=number then pushA(t)
 if type(t)=operator then
 if prio(t)≤prio(topO())
 then op=popO()
 arg2=popA()
 arg1=popA()
 pushA(exec(arg1,op,arg2))
 pushO(t)
 if t="(" then pushO(t)
 if t=")" then
 op=popO()
 while op≠"(" do
 arg2=popA()
 arg1=popA()
 pushA(exec(arg1,op,arg2))
 op=popO()
 t=gettoken()
while not isemptyO() do
 op=popO()
 arg2=popA()
 arg1=popA()
 pushA(exec(arg1,op,arg2))
return popA()

7

TI
vs
HP

7

Examples:

3 4 1 - 7 * + 6 2 2 3 + * - +

__ 3
4
 3

1
4
 3

3
 3

7
3
 3

21
 324

6
24

2
6
24

2
2
6
24

3
2
2
6
24

5
2
6
24

10
6
24

-4
2420

3 + (4 - 1)* 7 + (6 - 2 * (2 + 3))

7

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.11More Stacks

Stacks in the Java Virtual

Machine

• Each process running in a Java program has its own
Java Method Stack.

• Each time a method is called, it is pushed onto the
stack.

• The choice of a stack for this operation allows Java
to do several useful things:

- Perform recursive method calls

- Print stack traces to locate an error

• Java also includes an operand stack which is used to
evaluate arithmetic instructions, i.e.

Integer add(a, b):

OperandStack Op

Op.push(a)

Op.push(b)

temp1 ← Op.pop()

temp2 ← Op.pop()

Op.push(temp1 + temp2)

return Op.pop()

2.12More Stacks

Java Method Stack

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

8

8Stacks

An Efficient Algorithm
• The code for our new algorithm:

Algorithm computeSpan2(P):
Input: An n-element array P of numbers representing

stock prices
Output: An n-element array S of numbers such that

S[i] is the span of the stock on day i
Let D be an empty stack
for i ← 0 to n − 1 do
done ← false
while not(D.isEmpty() or done) do

if P[i] ≥ P[D.top()] then
D.pop()

else
done ← true

if D.isEmpty() then
h ← −1

else
h ← D.top()

S[i] ← i − h
D.push(i)

return S

• Let’s analyize computeSpan2’s run time...

7Stacks

A Stack Can Help
• We see that si on day i can be easily computed if we

know the closest day preceding i, such that the price
is greater than on that day than the price on day i. If
such a day exists, let’s call it h(i), otherwise, we
conventionally define h(i) = −1

• The span is now computed as si = i− h(i)

We use a stack to keep track of h(i)

0 1 2 3 4 5 6

8

Queue ADT
8

Queue
• A queue differs from a stack in that its

insertion and removal routines follows the
first-in-first-out (FIFO) principle.

• Elements may be inserted at any time, but
only the element which has been in the
queue the longest may be removed.

• Elements are inserted at the rear
(enqueued) and removed from the front
(dequeued).

8

Queue
• The queue has two fundamental methods: 

- enqueue(o): Inserts object o at rear of the queue 
- dequeue(): Removes object from front of queue
and returns it; an error occurs if queue is empty.

• These support methods should also be defined: 
- size(): Returns number of objects in the queue 
- isEmpty(): Returns a boolean value that indicates
whether the queue is empty 
- front(): Returns, but not remove, the front object
in the queue; an error occurs if queue is empty.

8

8

|•,•| |•,•| |•,•| |•,•| |•,⊠|

head tail size

|•,•,5|

Queue as
List

8

Array of shapes:

Size=5

0 1 2 3 4 5 6 7

[•,•,•,•,•,⊠,⊠,⊠]

Queue as Array
8

Array of shapes:

head=1, tail=5, (size=5)

0 (H) 2 3 4 (T) 6 7

[•,•,•,•,•,•,⊠,⊠]

Queue as Array
8

Array of shapes:

head=3, tail=2, (size=8)

 0 1 (T)(H) 4 5 6 7.

[•,•,•,•,•,•,•,•]

Queue as Array

FULL !!

8

Queue as Array

 out = a[head]

 return out
}

8

Queue as Array

small.length-1

head = 0
tail = small.length-1
size = small.length

8

 |•,•,T,H|

array size length

|•,4,4|

head = 0
tail = small.length-1
size = small.length

small.length-1

8
 |H,•,•,T,⊠,⊠,⊠,⊠|

8

Running Times and
Asymptotic Notation

9

Brute force. For many non-trivial problems, there is a natural brute force
search algorithm that tries every possible solution.
■ Typically takes 2N time or worse for inputs of size N.
■ Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants a > 0 and d > 0 such that on every
input of size N, its running time is bounded by a Nd steps.

choose C = 2d

even worse : N ! for some problems

Computational Tractability

9

Worst case running time. Obtain bound on largest possible running time of
algorithm on any input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on
random input as a function of input size N.
■ Hard (or impossible) to accurately model real instances by random

distributions.
■ Algorithm tuned for a certain distribution may perform poorly on other

inputs.

Worst Case Analysis

9

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
■ Although 6.02 × 1023 × N20 is technically poly-time, it would be useless in

practice.
■ In practice, the poly-time algorithms that people develop almost always

have low constants and low exponents.
■ Breaking through the exponential barrier of brute force typically exposes

some crucial structure of the problem.

Exceptions.
■ Some poly-time algorithms do have high constants and/or exponents, and

are useless in practice.
■ Some exponential-time (or worse) algorithms are widely used because

the worst-case instances seem to be rare.
simplex method 
Unix grep

Primality testing

Worst Case Polynomial-Time

9

133

Note: age of Universe ~ 1010 years…

Why it matters ?

9

Computer Science Approach
to problem solving

If my boss / supervisor / teacher formulates a
problem to be solved urgently, can I write a
program to efficiently solve this problem ???

9

Computer Science Approach
to problem solving

Are there some problems that cannot be
solved at all ? and, are there problems that
cannot be solved efficiently ??

9

Computer Science Approach
to problem solving

If my boss / supervisor / teacher formulates a
problem to be solved urgently, can I write a
program to efficiently solve this problem ???

9

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds. T(n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Tight bounds. T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)).

Ex: T(n) = 32n2 + 17n + 32.
■ T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2) .
■ T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3).

Asymptotic order of Growth
and Notation

9

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds. T(n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Ex: T(n) = 32n2 + 17n + 32.

■ T(n) is O(n2) since there exists c = 81 and n0 = 1 
such that for all n ≥ 1 we have T(n) ≤ 32n2 + 17n2 + 32n2 = 81n2. 

■ T(n) is Ω(n2) since there exists c = 1 and n0 = 0 
such that for all n ≥ 0 we have T(n) ≥ n2. 

■ T(n) is not O(n) since for all c > 0 and n0 ≥ 0 there exists n = ⌈c + 1/c + n0⌉ 
such that T(n) > 32(c+1/c+n0)

2 + 17(c+1/c+n0) + 32 ≥ c2 + c•n0 + 32 ≥ cn.

Asymptotic order of Growth
and Notation

9

Frequent Abuse of notation. T(n) = O(f(n)).
■ Not transitive:

– f(n) = 5n3; g(n) = 3n2

– f(n) = O(n3) and g(n) = O(n3)
– but f(n) ≠ g(n) and f(n) ≠ O(g(n)).

■ Better notations: T(n) ∈ O(f(n)), T(n) is O(f(n)).

Meaningless statement. "Any comparison-based sorting algorithm requires at
least O(n log n) comparisons."
■ Statement doesn't "type-check".
■ The constant function f(n)=1 is O(n log n).
■ Use Ω for lower bounds.

Asymptotic Notation

9

Polynomials. a0 + a1n + … + adnd is Θ(nd) if ad > 0.

Polynomial time. Running time is O(nd) for some constant d
independent of the input size n.

Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms. For every x > 0, log n is O(nx).

Exponentials. For every r > 1 and every d > 0, nd is O(rn).

every exponential grows faster than every polynomial

can avoid specifying the base

log grows slower than every polynomial

Frequently Used Functions
9

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max ← a1
for i = 2 to n {
 if (ai > max)
 max ← ai
}

Linear Time: O(n)

10

Merge. Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn
into a sorted whole.

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list increases by 1.

i = 1, j = 1
while (both lists are nonempty) {
 if (ai ≤ bj) append ai to output list and increment i
 else(ai ≤ bj)append bj to output list and increment j
}
append remainder of nonempty list to output list

Linear Time: O(n)

10

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and Heapsort are sorting algorithms that perform
O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which copies of
a file arrive at a server, what is largest interval of time when no copies of the
file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order,
identifying the maximum gap between successive time-stamps.

also referred to as linearithmic time

O(n log n) Time

10

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane
(x1, y1), …, (xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. This algorithm is Ω(n2) and it seems inevitable in general,
 but this is just an illusion.

min ← (x1 - x2)2 + (y1 - y2)2
for i = 1 to n {
 for j = i+1 to n {
 d ← (xi - xj)2 + (yi - yj)2
 if (d < min)
 min ← d
 }
}

don't need to 
take square roots

Quadratic Time: O(n2)

10

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of 
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pair of sets, determine if they are disjoint.

foreach set Si {
 foreach other set Sj {
 foreach element p of Si {
 determine whether p also belongs to Sj
 }
 if (no element of Si belongs to Sj)
 report that Si and Sj are disjoint
 }
}

Cubic Time: O(n3)

10

Independent set of size k. Given a graph, are there k nodes such that no
two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

■ Check whether S is an independent set = O(k2).  

■ Number of k element subsets :
■ O(k2 nk / k!) is O(nk).

foreach subset S of k nodes {
 check whether S in an independent set
 if (S is an independent set)
 report S is an independent set
 }
}

€

n
k
"

$
%

&
' =

n (n−1) (n− 2)! (n− k +1)
k (k −1) (k − 2)! (2) (1)

 ≤ n
k

k!

poly-time for k=17, 
but not practical

k is a constant

Polynomial Time: O(nk)

10

Independent set. Given a graph, what is the maximum size of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S* ← ∅
foreach subset S of nodes {
 check whether S in an independent set
 if (S is largest independent set seen so far)
 update S* ← S
 }
}

Exponential Time: O(cn)

10

 Predicate.
■ P(n) : f(n) = some formula in n 
 
Statement. 
∀n≥1, P(n) is true. 
 
Proof.

■ Base case: proof that P(1) is true.

■ Induction step: ∀n≥1, P(n) ⟹ P(n+1). 
 
Let n≥1. 
Assume for induction hypothesis that P(n) is
true and prove P(n+1) is also true.

Induction Proofs

10

■ f(n) = 1 + 2 + … + n = ∑n

i=1
 i 

 
 
 
 
 
 
 0 if n = 0

■ f(n)=  
 f(n-1)+n if n > 0

Iteration vs Recursion

f(n)
sum ← 0
for i = 2 to n {
 sum ← sum + i
}
return sum

{
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }

10

 Predicate.
■ P(n) : f(n) = some formula in n 
 
Statement. 
For all n≥1, P(n) is true. 
 
Proof.

■ Base case: proof that P(1) is true.

■ Induction step: let n≥1. Assume for
induction hypothesis that P(1)…P(n) are all
true. We show P(n+1) is also true.

Generalized Induction Proofs

10

■  
 n if n ≤ 1

■ fib(n)=  
 fib(n-1) + fib(n-2) if n > 1 
 
Fibonacci sequence: 
 0,1,1,2,3,5,8,13,21,34,55,89,144,…

■ NOT so easy to define iteratively…

{

Recursion:
Fibonacci Sequence

10

Recursion vs Iteration

fib(n)
a ← 0
b ← 1
for i = 1 to n {
 b ← a + b
 a ← b - a
}
return a

fib(n)
if n < 2 { return n }
else { return fib(n-1)+ fib(n-2) }

■  
 n if n ≤ 1

■ fib(n)=  
 fib(n-1) + fib(n-2) if n > 1{

10

Statements. 
For all n≥1, fib(n) ≤ 𝜑n is true. 
whenever 0 ≤ 𝜑2-𝜑-1 and 𝜑 ≥ 1.

For all n≥1, fib(n) ≥ 𝜑n-2 is true. 
whenever 0 ≥ 𝜑2-𝜑-1 and 𝜑 ≥ 1.

Therefore:
For all n≥1, 𝜑n/𝜑2 ≤ fib(n) ≤ 𝜑n is true. 
whenever 0 = 𝜑2-𝜑-1 and 𝜑 ≥ 1.
Only solution 𝜑 = golden ration = (1+√5)/2.

fib(n) is 𝜭(𝜑n).

Weak Binet Formula

10

Mergesort.
■ Divide array into two halves.
■ Recursively sort each half.
■ Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann
(1945)

O(n)

2T(n/2)

O(1)

Merge Sort
10

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
■ Linear number of comparisons.
■ Use temporary array.

Challenge for the bored. In-place merge. [Kronrod, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

Merge
10

2

1 3

Tower of Hanoi

Goal: move the n discs from
 stack #3 to stack #2 while

• allowing only one disc removed
at any time

• allowing only a smaller disc to
rest on top of a larger one.

11

21 3

Hanoi(n,S3,S2,S1) // n≥1

if n>1then Hanoi(n-1,S3,S1,S2)
move disc n from S3 to S2
if n>1then Hanoi(n-1,S1,S2,S3)

11

Def. T(n) = number of moves to Hanoi of n.

Hanoi recurrence.

Solution. T(n) is O(2n).

Assorted proofs. We describe several ways to prove this recurrence.

Recurrence Relation

 1 if n = 1
T(n) =
 2T(n-1) + 1 if n > 1

{

11

Claim. If T(n) satisfies this recurrence, then T(n) = 2n -1.

Pf. For n > 1: T(n) = 2T(n-1) + 1
 = 2(2T(n-2) + 1) + 1
 = 4T(n-2) + 2 + 1
 = 4(2T(n-3) + 1) + 2 + 1
 = 8T(n-3) + 4 + 2 + 1
 …
 = 2kT(n-k) + 2k-1 + … + 2 + 1
 …
 = 2n-1T(1) + 2n-2 + … + 2 + 1
 = 2n - 1.

Telescoping Proof

 1 if n = 1
T(n) =
 2T(n-1) + 1 if n > 1

{

11

Claim. If T(n) satisfies this recurrence, then T(n) = 2n - 1.

Pf. (by induction on n)
■ Base case: n = 1 = 21 - 1.
■ Inductive hypothesis: for n≥1, T(n) = 2n - 1.
■ Goal: show that T(n+1) = 2n+1 - 1.

Induction Proof

 1 if n = 1
T(n) =
 2T(n-1) + 1 if n > 1

{

T(n+1) = 2T(n) + 1 by definition
 = 2(2n - 1) + 1 by I.H.
 = 2n+1 - 2 + 1
 = 2n+1 - 1.

11

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) is O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace ≤ with =.

Recurrence Relation

11

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

assumes n is a power of 2

�

T(n)
n

= 2T(n /2)
n

+ 1

= T(n /2)
n /2

+ 1

= T(n / 4)
n / 4

+ 1 + 1
!

= T(n /n)
n /n

+ 1 +!+ 1
log2 n

" # $ % $

= log2 n

Telescoping Proof

11

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on k such that n=2k)
■ Base case: n = 20 = 1.
■ Inductive hypothesis: T(n) = T(2k) = n log2 n.
■ Goal: show that T(2n) = T(2k+1) = 2n log2 (2n).

assumes n is a power of 2

Induction Proof

11

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n ⎡lg n⎤.

Pf. (by induction on n)
■ Base case: n = 1. T(1) = 0 = 1⎡lg 1⎤.
■ Define n1 = ⎣n / 2⎦ , n2 = ⎡n / 2⎤. (note 1≤n1<n, 1≤n2<n)
■ Induction step: Let n≥2, assume true for 1, 2, ... , n–1.

log2n

Generalized Induction Proof

11

a = (constant) number of sub-instances,
b = (constant) size ration of sub-instances,
𝑓(n) = time used for dividing and recombining.

Master Theorem

12

Solution: T(n) is 𝛩(𝑓(n))

Solution: T(n) is 𝛩(nlogb a)

isCase 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

Solution: T(n) is 𝛩(nlogb a logk+1 n)
Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem
12

T(n) = 27T(n/3) + 𝛩(n3/log n)
Compare nlog3 27 vs. n3.
Since 3 = log3 27 use Case 2
but n3/log n is not 𝛩(n3 log k n) for k ≥ 0

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Cannot use Master Method.

12

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
■ Straightforward: n2.
■ Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

12

Find a value v in a
sorted array of elements.

[a0 ≤ a1 ≤,…,≤ aSize-1]

Size = number of elements.

Binary Search

12

Binary Search

12

Def. T(n) = number of comparisons to find v among n sorted elements.

Binary Search recurrence.

Solution. T(n) is O(log n) (Master Theorem Case 2).

Recurrence Relation

 1 if n = 1
T(n) =
 T(n/2) + 1 if n > 1

{

12

To multiply two n-digit integers:
■ Multiply four n/2-digit integers.
■ Add two n/2-digit integers, and shift to obtain result.

assumes n is a power of 2

is

D&C Multiplication

12

To multiply two n-digit integers:
■ Add two n/2 digit integers.
■ Multiply three n/2-digit integers.
■ Add, subtract, and shift n/2-digit integers to obtain result.

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in
O(n1.585) bit operations.

is is

Karatsuba Multiplication

12

Generalization: O(n1+ε) for any ε > 0.

Best known: n log n 2O(log* n)

Conjecture: Ω(n log n) but not proven yet.

 0 if x≤1
where log*(x)=
 1+log*(log x) if x>1

Karatsuba Multiplication

{

12

Alice and Bob’s
Adventures in
Cryptoland…

Responder  
47  

City Police

Alice Bob

14

» »

14

»

»
»»»»

»

WWiillll yyoouu mmaarrrryy mmee ??

»

DDeeccrryyppttiioonn

mmaarrrryy mmee ??»
EEnnccrryyppttiioonn

 PPuubblliicc--KKeeyy CCrryyppttooggrraapphhyy

14

Fast Modular
Exponentiation

Input: base x ,modulus N and exponent e.

Output: xe %N . 
 
y = 1 
WHILE e>0 DO 
 IF e%2 = 1 THEN y = xy %N 
 e = e/2; x = x2 %N 
return y

running time is O(|e|*|x|2) = O(|x|3)

14

Euclidian Algorithm

Input: integers a,b.

Output: g,x,y such that g=GCD(a,b).  
 
g = a; g’ = b; 
WHILE g’>0 DO 
 k = g/g’ 
 g’’ = g-kg’; // g’’ = g %g’ 
 g = g’;  
 g’ = g’’;  
return g

running time is O(|a|*|b|)

14

Primality Testing
Input: base a, modulus N.

Output: Is N a base-a pseudo-prime? . 
 
IF GCD(a,N) > 1 THEN return False 
set s ≥ 0 and t (odd) s.t. N-1 = t2s 
x = a2 %N; y = N-1  
FOR i = 1 TO s 
 IF x = 1 AND y = N-1 THEN return True  
 y = x; x = x2 %N 
return False

running time is O(|N|4)

14

RSA Encryption

Gen: on input 1n run GenRSA(1n) and obtain (N,e,d).  
Let ⟨N,e⟩ be the public-key and ⟨d⟩ the private key.

Enc: on input ⟨N,e⟩ and a message 0<m<N compute 
 c = me mod N

Dec: on input ⟨d⟩ and a ciphertext 0<c<N compute 
 m = cd mod N

14

©© CCllaauuddee CCrrééppeeaauu 22000022--22000088 5599

((77))
QQuuaannttuumm FFaaccttoorriinngg

1990’s

14

Dustin Moody
Post Quantum Cryptography Team

National Institute of Standards and Technology (NIST)

24 Feb 2016

14

Alice and Bob’s
Adventures in
GEOM-land…

Alice Bob

15

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

15

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

15

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

3Geometric Algorithms

Some Geometric Problems

Segment intersection: Given two segments, do
they intersect?

Simple closed path: Given a set of points, find a
nonintersecting polygon with vertices on the
points.

Inclusion in polygon: Is a point inside or outside
a polygon?

15

10Geometric Algorithms

How to Compute the Orientation
• slope of segment (p1,p2): σ = (y2−y1) / (x2−x1)

• slope of segment (p2,p3): τ = (y3−y2) / (x3−x2)

• Orientation test
- counterclockwise (left turn): σ < τ
- clockwise (right turn): σ > τ
- collinear (left turn): σ = τ

• The orientation depends on whether the expression
(y2−y1) (x3−x2) − (y3−y2) (x2−x1)
is positive, negative, or zero.

p1

p2

p3

x2−x1

x3−x2

y 3
−y
2

y 2
−y
1

15

11Geometric Algorithms

Point Inclusion
• given a polygon and a point, is the point inside or

outside the polygon?

• orientation helps solving this problem in linear time

15

14Geometric Algorithms

Simple Closed Path — Part I
• Problem: Given a set of points ...

• “Connect the dots” without crossings

15

CS 16: Convex Hull Au-

dnc 367

Package Wrap
• given the current point, how do we compute

the next point?
• set up an orientation tournament using the

current point as the anchor-point...
• the next point is selected as the point that

beats all other points at CCW orientation,
i.e., for any other point, we have

orientation(c, p, q) = CCW

c

q

p

15

CS 16: Convex Hull Au-

dnc 368

Time Complexity of
Package Wrap

• For every point on the hull we examine all
the other points to determine the next point

• Notation:
• N: number of points
• M: number of hull points (M ≤ N)

• Time complexity:
• Θ(MN)

• Worst case: Θ(N2)
• all the points are on the hull (M=N)

• Average case: Θ(N log N) — Θ(N4/3)
• for points randomly distributed inside

a square,M = Θ(log N) on average
• for points randomly distributed inside

a circle,M = Θ(N1/3) on average

15

CS 16: Convex Hull Au-

dnc 371

Graham Scan

• Form a simple polygon (connect the dots as
before)

• Remove points at concave angles

15

CS 16: Convex Hull Au-

dnc 377

c
pn

right turn!
(p,c,n) is a

c
pn

right turn!
(p,c,n) is a

c
p

n

15

CS 16: Convex Hull Au-

dnc 378

Time Complexity of
Graham Scan

• Phase 1 takes time O(N logN)
• points are sorted by angle around the

anchor
• Phase 2 takes time O(N)

• each point is inserted into the sequence
exactly once, and

• each point is removed from the
sequence at most once

• Total time complexity O(N log N)

15

1Graphs

GRAPHS
• Definitions

• Examples

• The Graph ADT

LAX

PVD

LAX

DFW
FTL

STL
HNL

16

2Graphs

What is a Graph?
• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

• An edge e = (u,v) is a pair of vertices

• Example:

a b

c

d e

V= {a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}

16

3Graphs

Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW
FTL

STL
HNL

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

16

5Graphs

Graph Terminology
• adjacent vertices: connected by an edge

• degree (of a vertex): # of adjacent vertices

path: sequence of vertices v1,v2,. . .vk such that
consecutive vertices vi and vi+1 are adjacent.
a b

c

d e

a b

c

d e
a b e d c b e d c

3

3 3

3

2
Σ deg(v) = 2(# edges)
v∈V

• Since adjacent vertices
each count the
adjoining edge, it will
be counted twice

16

11Graphs

Spanning Tree
• A spanning tree of G is a subgraph which

- is a tree
- contains all vertices of G

• Failure on any edge disconnects system (least fault
tolerant)

G spanning tree of G

16

1Data Structures for Graphs

DATA STRUCTURES FOR
GRAPHS

• Edge list

• Adjacency lists

• Adjacency matrix

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V

16

3Data Structures for Graphs

Edge List
• The edge list structure simply stores the vertices and

the edges into unsorted sequences.

• Easy to implement.

• Finding the edges incident on a given vertex is
inefficient since it requires examining the entire
edge sequence

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V

E
dg

e
L

is
t

16

5Data Structures for Graphs

Adjacency List
(traditional)

• adjacency list of a vertex v:
sequence of vertices adjacent to v

• represent the graph by the adjacency lists of all the
vertices

• Space = Θ(N + Σdeg(v)) = Θ(N + M)

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

a

b

c

d

e

A
dj

ac
en

cy
 L

is
t (

tr
ad

iti
on

al
)

16

8Data Structures for Graphs

Adjacency Matrix
(traditional)

• matrix M with entries for all pairs of vertices

• M[i,j] = true means that there is an edge (i,j) in the
graph.

• M[i,j] = false means that there is no edge (i,j) in the
graph.

• There is an entry for every possible edge, therefore:
Space = Θ(N2)

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

d e

a b c d e
a
b
c
d
e

A
dj

ac
en

cy
 M

at
ri

x
(tr

ad
iti

on
al

)
16

7Data Structures for Graphs

Performance of the Adjacency
List Structure

Operation Time
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destina-
tion, isDirected, degree, inDegree, out-
Degree

O(1)

incidentEdges(v), inIncidentEdges(v),
outIncidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdja-
centVertices(v)

O(deg(v))

areAdjacent(u, v) O(min(deg(u),
deg(v)))

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection,

O(1)

removeVertex(v) O(deg(v))

10Data Structures for Graphs

Performance of the Adjacency
Matrix Structure
Operation Time

size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination,
isDirected, degree, inDegree, outDegree

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,

O(n)

areAdjacent O(1)
insertEdge, insertDirectedEdge, remov-
eEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

insertVertex, removeVertex O(n2)

Adjacency Matrix
Adjacency List

4Data Structures for Graphs

Performance of the Edge List
Structure

Operation Time
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination,
isDirected

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent, degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setDi-
rectionTo

O(1)

removeVertex O(m)

Edge List

Performance of all 3 Structures16

1Trees

TREES
•trees

•binary trees

•traversals of trees

•template method pattern

•data structures for trees

17

3Trees

Another Example
•Unix or DOS/Windows file system

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

17

4Trees

Terminology
• A is the root node.

• B is the parent of D and E.

• C is the sibling of B

• D and E are the children of B

• D, E, F, G, I are external nodes, or leaves

• A, B, C, H are internal nodes

•The depth (level) of E is 2

•The height of the tree is 3

•The degree of node B is 2

Property: (# edges) = (#nodes) − 1

A

B C

D G H

I

FE

4Trees

Terminology
• A is the root node.

• B is the parent of D and E.

• C is the sibling of B

• D and E are the children of B

• D, E, F, G, I are external nodes, or leaves

• A, B, C, H are internal nodes

•The depth (level) of E is 2

•The height of the tree is 3

•The degree of node B is 2

Property: (# edges) = (#nodes) − 1

A

B C

D G H

I

FE

17

5Trees

Binary Trees
• Ordered tree: the children of each node are ordered.

• Binary tree: ordered tree with all internal nodes of
degree 2.

•Recursive definition of binary tree:

• A binary tree is either
- a n external node (leaf), or
- a n internal node (the root) and two binary trees

(left subtree and right subtree)

17

6Trees

Examples of Binary Trees
•arithmetic expression

• r i v e r

+

+

+

+

×

×

+
+

×

3

6

2 8

5

1

4
7 2

4
((((3 × (1 + (4 + 6))) + (2 + 8)) × 5) + (4 × (7 + 2)))

17

8Trees

Properties of Binary Trees
• (# external nodes) = (# internal nodes) + 1

• (# nodes at level i) ≤ 2 i

• (# external nodes) ≤ 2 (height)

• (height) ≥ log2 (# external nodes)

• (height) ≥ log2 (# nodes) − 1

• (height) ≤ (# internal nodes) = ((# nodes) − 1)/2

0

1

2

3

4

Level

17

18Trees

Linked Data Structure for
Binary Trees

root

∅

∅

∅∅ ∅

∅

∅

Baltimore Chicago New York Providence Seattle

size
5

17

18Trees

Linked Data Structure for
Binary Trees

root

∅

∅

∅∅ ∅

∅

∅

Baltimore Chicago New York Providence Seattle

size
5

19Trees

Representing General Trees
•tree T

•binary tree T' representing T

A

B D

E F G

C

A

B

C

D

E

F

G

17

19Trees

Representing General Trees
•tree T

•binary tree T' representing T

A

B D

E F G

C

A

B

C

D

E

F

G

19Trees

Representing General Trees
•tree T

•binary tree T' representing T

A

B D

E F G

C

A

B

C

D

E

F

G

17

1Depth-First Search

DEPTH-FIRST SEARCH
• Graph Traversals

• Depth-First Search

M N O P

I J K L

E F G H

A B C D

18

4Depth-First Search

Depth-First Search
Algorithm DFS(v);

Input: A vertex v in a graph
Output: A labeling of the edges as “discovery” edges

and “backedges”
for each edge e incident on v do

if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then

label e as a discovery edge
recursively call DFS(w)

else

label e as a backedge

B C

D E

F

G

unvisited vertex
A

traversed edge

F

current Vertex

adjacent Vertex

visited vertex

18

16Depth-First Search

DFS Properties
• Proposition 9.12 : Let G be an undirected graph on

which a DFS traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
 connected component of s

2) The discovery edges form a spanning tree of
 the connected component of s

• Justification of 1):
- Let’s use a contradiction argument: suppose there

is at least on vertex v not visited and let w be the
first unvisited vertex on some path from s to v.

- Because w was the first unvisited vertex on the
path, there is a neighbor u that has been visited.

- But when we visited u we must have looked at
edge(u, w). Therefore w must have been visited.

- and justification

• Justification of 2):
- We only mark edges from when we go to unvisited

vertices. So we never form a cycle of discovery
edges, i.e. discovery edges form a tree.

- This is a spanning tree because DFS visits each
vertex in the connected component of s

18

16Depth-First Search

DFS Properties
• Proposition 9.12 : Let G be an undirected graph on

which a DFS traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
 connected component of s

2) The discovery edges form a spanning tree of
 the connected component of s

• Justification of 1):
- Let’s use a contradiction argument: suppose there

is at least on vertex v not visited and let w be the
first unvisited vertex on some path from s to v.

- Because w was the first unvisited vertex on the
path, there is a neighbor u that has been visited.

- But when we visited u we must have looked at
edge(u, w). Therefore w must have been visited.

- and justification

• Justification of 2):
- We only mark edges from when we go to unvisited

vertices. So we never form a cycle of discovery
edges, i.e. discovery edges form a tree.

- This is a spanning tree because DFS visits each
vertex in the connected component of s

16Depth-First Search

DFS Properties
• Proposition 9.12 : Let G be an undirected graph on

which a DFS traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
 connected component of s

2) The discovery edges form a spanning tree of
 the connected component of s

• Justification of 1):
- Let’s use a contradiction argument: suppose there

is at least on vertex v not visited and let w be the
first unvisited vertex on some path from s to v.

- Because w was the first unvisited vertex on the
path, there is a neighbor u that has been visited.

- But when we visited u we must have looked at
edge(u, w). Therefore w must have been visited.

- and justification

• Justification of 2):
- We only mark edges from when we go to unvisited

vertices. So we never form a cycle of discovery
edges, i.e. discovery edges form a tree.

- This is a spanning tree because DFS visits each
vertex in the connected component of s

18

17Depth-First Search

Running Time Analysis
• Remember:

- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from

each of its vertices

• For ns vertices and ms edges in the connected
component of the vertex s, a DFS starting at s runs in
O(ns +ms) time if:
- The graph is represented in a data structure, like

the adjacency list, where vertex and edge methods
take constant time

- Marking a vertex as explored and testing to see if a
vertex has been explored takes O(degree)

- By marking visited nodes, we can systematically
consider the edges incident on the current vertex
so we do not examine the same edge more than
once.

18

10Generic DFS and BFS

Breadth-First Search
•Like DFS, a Breadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
definesaspanningtreewithseveralusefulproperties

-The starting vertex s has level 0, and, as in DFS,
defines that point as an “anchor.”

-In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

-These edges are placed into level 1
-In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

-This continues until every vertex has been
assigned a level.

-The label of any vertex v corresponds to the length
of the shortest path from s to v.

11Generic DFS and BFS

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

11Generic DFS and BFS

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

11Generic DFS and BFS

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

11Generic DFS and BFS

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

11Generic DFS and BFS

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

12Generic DFS and BFS

More BFS
e) f)

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

10Generic DFS and BFS

Breadth-First Search
•Like DFS, a Breadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
definesaspanningtreewithseveralusefulproperties

-The starting vertex s has level 0, and, as in DFS,
defines that point as an “anchor.”

-In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

-These edges are placed into level 1
-In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

-This continues until every vertex has been
assigned a level.

-The label of any vertex v corresponds to the length
of the shortest path from s to v.

18

10Generic DFS and BFS

Breadth-First Search
•Like DFS, a Breadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
definesaspanningtreewithseveralusefulproperties

-The starting vertex s has level 0, and, as in DFS,
defines that point as an “anchor.”

-In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

-These edges are placed into level 1
-In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

-This continues until every vertex has been
assigned a level.

-The label of any vertex v corresponds to the length
of the shortest path from s to v.

18

13Generic DFS and BFS

BFS Pseudo-Code
Algorithm BFS(s):

Input: A vertex s in a graph
Output:Alabelingoftheedgesas“discovery”edges

and “cross edges”
initialize container L0 to contain vertex s
i ← 0
while Li is not empty do

create container Li+1 to initially be empty
for each vertex v in Li do

for eachedge e incident on v do
if edge e is unexplored then

let w be the other endpoint of e
if vertex w is unexplored then
 label e as a discovery edge
 insert w into Li+1
else
 label e as a cross edge

i ← i + 1

18

14Generic DFS and BFS

Properties of BFS
• Proposition:Let G be an undirected graph on which

a BFS traversal starting at vertex s has been
performed. Then
-The traversal visits all vertices in the connected

component of s.
-The discovery-edges form a spanning tree T,

which we call the BFS tree, of the connected
component of s

-For each vertex v at level i,the path of the BFS tree
T between s and v has i edges, and any other path
of G between s and v has at least i edges.

- I f(u, v) is an edge that is not in the BFS tree, then
the level numbers of u and v differ by at most one.

• Proposition: Let G be a graph with n vertices and m
edges. A BFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum

number of edges of any path between s and v.

18

14Generic DFS and BFS

Properties of BFS
• Proposition:Let G be an undirected graph on which

a BFS traversal starting at vertex s has been
performed. Then
-The traversal visits all vertices in the connected

component of s.
-The discovery-edges form a spanning tree T,

which we call the BFS tree, of the connected
component of s

-For each vertex v at level i,the path of the BFS tree
T between s and v has i edges, and any other path
of G between s and v has at least i edges.

- I f(u, v) is an edge that is not in the BFS tree, then
the level numbers of u and v differ by at most one.

• Proposition: Let G be a graph with n vertices and m
edges. A BFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum

number of edges of any path between s and v.

14Generic DFS and BFS

Properties of BFS
• Proposition:Let G be an undirected graph on which

a BFS traversal starting at vertex s has been
performed. Then
-The traversal visits all vertices in the connected

component of s.
-The discovery-edges form a spanning tree T,

which we call the BFS tree, of the connected
component of s

-For each vertex v at level i,the path of the BFS tree
T between s and v has i edges, and any other path
of G between s and v has at least i edges.

- I f(u, v) is an edge that is not in the BFS tree, then
the level numbers of u and v differ by at most one.

• Proposition: Let G be a graph with n vertices and m
edges. A BFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum

number of edges of any path between s and v.

14Generic DFS and BFS

Properties of BFS
• Proposition:Let G be an undirected graph on which

a BFS traversal starting at vertex s has been
performed. Then
-The traversal visits all vertices in the connected

component of s.
-The discovery-edges form a spanning tree T,

which we call the BFS tree, of the connected
component of s

-For each vertex v at level i,the path of the BFS tree
T between s and v has i edges, and any other path
of G between s and v has at least i edges.

- I f(u, v) is an edge that is not in the BFS tree, then
the level numbers of u and v differ by at most one.

• Proposition: Let G be a graph with n vertices and m
edges. A BFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum

number of edges of any path between s and v.

18

1Searching

SEARCHING
• the dictionary ADT

• binary search

• binary search trees

88

44

17 78

32 50

48 62

1Searching

SEARCHING
• the dictionary ADT

• binary search

• binary search trees

88

44

17 78

32 50

48 62

19

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

19

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

2Searching

The Dictionary ADT
• a dictionary is an abstract model of a database

• like a priority queue, a dictionary stores key-element
pairs

• the main operation supported by a dictionary is
searching by key

• simple container methods:
- size()
- isEmpty()
- elements()

• query methods:
- findElement(k)
- findAllElements(k)

• update methods:
- insertItem(k, e)
- removeElement(k)
- removeAllElements(k)

• special element
- NO_SUCH_KEY, returned by an unsuccessful

search

19

7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

external nodes do not hold elements but serve as
place holders.

7Searching

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- keys stored at nodes in the right subtree of v are
greater than or equal to k.

- kxternal nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

19

8Searching

Search
• A binary search tree T is a decision tree, where the

question asked at an internal node v is whether the
search key k is less than, equal to, or greater than the
key stored at v.

• Pseudocode:
Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search

tree T.
Ouput: A node w of the subtree T(v) of T rooted at v,

such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal of T(v) after all the inter
nal nodes with keys smaller than k and before
all the internal nodes with keys greater than k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

8Searching

Search
• A binary search tree T is a decision tree, where the

question asked at an internal node v is whether the
search key k is less than, equal to, or greater than the
key stored at v.

• Pseudocode:
Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search

tree T.
Ouput: A node w of the subtree T(v) of T rooted at v,

such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal of T(v) after all the inter
nal nodes with keys smaller than k and before
all the internal nodes with keys greater than k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

8Searching

Search
• A binary search tree T is a decision tree, where the

question asked at an internal node v is whether the
search key k is less than, equal to, or greater than the
key stored at v.

• Pseudocode:
Algorithm TreeSearch(k, v):
Input: A search key k and a node v of a binary search

tree T.
Ouput: A node w of the subtree T(v) of T rooted at v,

such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal of T(v) after all the inter
nal nodes with keys smaller than k and before
all the internal nodes with keys greater than k.

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

19

11Searching

Insertion
• To perform insertItem(k, e), let w be the node

returned by TreeSearch(k, T.root())

• If w is external, we know that k is not stored in T. We
call expandExternal(w) on T and store (k, e) in w

97

88

65

54 82

76

80

97

88

65

54 82

76

80

78

w

w

insertItem(78, e)

19

13Searching

Removal I
• We locate the node w where the key is stored with

algorithm TreeSearch

• If w has an external child z, we remove w and z
with removeAboveExternal(z)

44

17 88

32 65

5428

29

w
z

44

17 88

65

54

28

29

removeElement(32)

19

15Searching

Time Complexity
• A search, insertion, or removal, visits the nodes

along a root-to leaf path, plus possibly the siblings
of such nodes

• Time O(1) is spent at each node

• The running time of each operation is O(h), where h
is the height of the tree

• The height of binary serch tree is in n in the worst
case, where a binary search tree looks like a sorted
sequence

• To achive good running time, we need to keep the
tree balanced, i.e., with O(log n) height

• Various balancing schemes will be explored in the
next lectures

10

20

30

40

19

6.1Heaps I

HEAPS I
• Heaps

• Properties

• Insertion and Deletion

20

6.2Heaps I

Heaps
• A heap is a binary tree T that stores a collection of

keys (or key-element pairs) at its internal nodes and
that satisfies two additional properties:
- Order Property: key(parent) ≤ key(child)
- Structural Property: all levels are full, except the

last one, which is left-filled (complete binary tree)

4

6

207

811

5

9

1214

15

2516

20

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

20

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

6.4Heaps I

Height of a Heap
A heap T storing n keys has height h = log(n + 1),
which is O(log n)

• n ≥ 1 + 2 + 4 + ... + 2h-2 + 1 = 2h-1 - 1 + 1 = 2h-1

• n ≤ 1 + 2 + 4 + ... +2h-1 = 2h - 1

• Therefore 2h-1 ≤ n ≤ 2h - 1

• Taking logs, we get log (n + 1) ≤ h ≤ log n + 1

• Which implies h = log(n+1)

4

6

207

5

915

16h − 1

0
1

h − 2

h

h − 1

0
1

h − 2

h

4

6

207

811

5

9

1214

15

2516 2231

20

6.5Heaps I

3

74

21 10 20 8

22 28 13 25

Heap Insertion

So here we go ...

The key to insert is 6

19

20

6.7Heaps I

Upheap
• Swap parent-child keys out of order

3
74

21 10 20 8

22 28 13 19 25 6

3
74

21 10 6 8

22 28 13 19 25 20

20

6.10Heaps I

Removal From a Heap
RemoveMin()

7

4

21 10 8

22 28 13 19 25

6

• The removal of the top key leaves a hole
• We need to fix the heap
• First, replace the hole with the last key in

the heap
• Then, begin Downheap

3

20

20

6.11Heaps I

Downheap
20

7

4

21 10 8

22 28 13 19 25

6

Downheap compares the parent with the smallest
child. If the child is smaller, it switches the two.

4

7

20

21 10 8

22 28 13 19 25

6

20

6.1Heaps II

HEAPS II
• Implementation

• HeapSort

• Bottom-Up Heap Construction

• Locators

20

6.2Heaps II

Implementation of a Heap
public class HeapPriorityQueue implements PriorityQueue
{

BinaryTree T;
Position last;
Comparator comparator;
...

}

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

20

6.4Heaps II

Vector Based Implementation
• Updates in the underlying tree occur only at the “last

element”

• A heap can be represented by a vector, where the
node at rank i has
- left child at rank 2i and
- right child at rank 2i + 1

• The leaves do no need to be explicitly stored

• Insertion and removals into/from the heap
correspond to insertLast and removeLast on the
vector, respectively

1

2

5 6 7

3

4

8 9 10 11 12 13

20

6.5Heaps II

Heap Sort
• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for
our priority queue, insertItem and removeMin each
take O(log k), k being the number of elements in the
heap at a given time.

• We always have at most n elements in the heap, so
the worst case time complexity of these methods is
O(log n).

• Thus each phase takes O(n log n) time, so the
algorithm runs in O(n log n) time also.

• This sort is known as heap-sort.

• The O(n log n) run time of heap-sort is much better
than the O(n2) run time of selection and insertion
sort.

In-Place Heap-Sort
• Do not use an external heap

• Embed the heap into the sequence, using the vector
representation

20

6.6Heaps II

Bottom-Up Heap Construction
• build (n + 1)/2 trivial one-element heaps

• now build three-element heaps on top of them

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

20

⟨a1,a2,a3⟩

⟨a3,a1,a2⟩
⟨a1,a3,a2⟩
⟨a1,a2,a3⟩

⟨a1,a3,a2⟩ ⟨a3,a1,a2⟩

⟨a3,a1,a2⟩
⟨a1,a3,a2⟩

⟨a3,a1,a2⟩
⟨a2,a1,a3⟩
⟨a1,a2,a3⟩

⟨a3,a2,a1⟩
⟨a2,a3,a1⟩
⟨a1,a3,a2⟩

⟨a2,a1,a3⟩

⟨a3,a2,a1⟩
⟨a2,a3,a1⟩

⟨a2,a1,a3⟩

⟨a3,a2,a1⟩
⟨a2,a3,a1⟩

⟨a2,a3,a1⟩ ⟨a3,a2,a1⟩

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
20

N!

N!/2 N!/2

N!/4 N!/4 N!/4 N!/4

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

log N! ∈ 𝜽(N log N)

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩ ⟨a1,a2,a3⟩
⟨a1,a2,a3⟩

⟨a1,a2,a3⟩ ⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

⟨a1,a2,a3⟩⟨a1,a2,a3⟩

⟨a1,a2,a3⟩

20

Chapter 8

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
21

QuickSort

QuickSort

• Yet another sorting algorithm!

• Usually faster than other algorithms on average,

although worst-case is O(n2)

• Divide-and-conquer:

– Divide: Choose an element of the array for pivot.

Divide the elements into three groups: those smaller

than the pivot, those equal, and those larger.

– Conquer: Recursively sort each group.

– Combine: Concatenate the three sorted groups.

22

QuickSort running time

• Worse case:

– Already sorted array (either increasing or decreasing)

– T(n) = T(n-1) + c n + d

– T(n) is O(n2)

• Average case: If the array is in random order, the
pivot splits the array in roughly equal parts, so the
average running time is O(n log n)

• Advantage over mergeSort:

– constant hidden in O(n log n) are smaller for quickSort.
Thus it is faster by a constant factor

– QuickSort is easy to do “in-place”

22

• An algorithm is in-place if it uses only a constant
amount of memory in addition of that used to store
the input

• Importance of in-place sorting algorithms:

– If the data set to sort barely fits into memory, we don't
want an algorithm that uses twice that amount to sort
the numbers

• SelectionSort and InsertionSort are in-place: all
we are doing is moving elements around the array

• MergeSort is not in-place, because of the merge
procedure, which requires a temporary array

• QuickSort can easily be made in-place...

In-place algorithms

22

Algorithm partition(A, start, stop)

Input: An array A, indices start and stop.

Output: Returns an index j and rearranges the elements of A
such that for all i<j, A[i] ! A[j] and
for all k>i, A[k] " A[j].

pivot # A[stop]

left # start

right # stop - 1

while left ! right do

while left ! right and A[left] ! pivot) do left # left + 1

 while (left ! right and A[right] " pivot) do right # right -1

 if (left < right) then exchange A[left] $ A[right]

exchange A[stop] $ A[left]

return left

Partition

j

22

In-place quickSort

Algorithm quickSort(A, start, stop)

Input: An array A to sort, indices start and stop

Output: A[start...stop] is sorted

if (start < stop) then

pivot # partition(A, start, stop)

quickSort(A, start, pivot-1)

quickSort(A, pivot+1, stop)

22

RandomizedQuicksort(A,start,stop) {
 if |A| = 0 return

 choose a pivot A[i] uniformly at random (start ≤ i ≤ stop)
 exchange A[i] ⬌ A[stop]

 pivot ← partition(A,start,stop)

 RandomizedQuicksort(A, start, pivot-1)
 RandomizedQuicksort(A, pivot+1, stop)
}

Randomized Quicksort
22

Quicksort

Running time.
■ [Best case.] Select the median element as the pivot: quicksort makes Θ(n log n)

comparisons.
■ [Worst case.] Select the smallest (or largest) element as the pivot: quicksort

makes Θ(n2) comparisons.

Randomize. Protect against worst case by choosing pivot at random.

Intuition. If we always select a pivot that is bigger than 25% of the elements and

smaller than 25% of the elements, then quicksort makes Θ(n log n) comparisons.

Notation. Label elements so that x1 < x2 < … < xn.

22

Theorem. Expected # of comparisons is O(n log n). 
 

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65n.

Ex. If n = 1 million, the probability that randomized quicksort takes less than 4n ln n

comparisons is at least 99.94%.

 Chebyshev's inequality. Pr[|X - μ| ≥ kδ] < 1 / k2.

Randomized Quicksort: Expected Number of Comparisons

Mean Stddev

22

1Strings and Pattern Matching

STRINGS AND PATTERN
MATCHING

• Brute Force,Rabin-Karp, Knuth-Morris-Pratt

• Regular Expressions

What’s up?

I’m looking for some string.

That’s quite a trick considering
that you have no eyes.

Oh yeah? Have you seen your writing?
It looks like an EKG!

22

2Strings and Pattern Matching

String Searching
• The previous slide is not a great example of what is

meant by “String Searching.” Nor is it meant to
ridicule people without eyes....

• The object of string searching is to find the location
of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations
for string searching are speed and efficiency.

• There are a number of string searching algorithms in
existence today, but the three we shall review are
Brute Force,Rabin-Karp, and Knuth-Morris-Pratt.

2Strings and Pattern Matching

String Searching
• The previous slide is not a great example of what is

meant by “String Searching.” Nor is it meant to
ridicule people without eyes....

• The object of string searching is to find the location
of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations
for string searching are speed and efficiency.

• There are a number of string searching algorithms in
existence today, but the three we shall review are
Brute Force,Rabin-Karp, and Knuth-Morris-Pratt.

22

8Strings and Pattern Matching

Rabin-Karp
• The Rabin-Karp string searching algorithm

calculates a hash value for the pattern, and for each
M-character subsequence of text to be compared.

• If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

• If the hash values are equal, the algorithm will do a
Brute Force comparison between the pattern and the
M-character sequence.

• In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when
hash values match.

• Perhaps an example will clarify some things...

22

10Strings and Pattern Matching

Rabin-Karp Algorithm
pattern is M characters long

hash_p=hash value of pattern
hash_t=hash value of first M letters in

body of text

do
if (hash_p == hash_t)

brute force comparison of pattern
and selected section of text

hash_t = hash value of next section of
 text, one character over

while (end of text or
 brute force comparison == true)
until

22

15Strings and Pattern Matching

Rabin-Karp Complexity
• If a sufficiently large prime number is used for the

hash function, the hashed values of two different
patterns will usually be distinct.

• If this is the case, searching takes O(N) time, where
N is the number of characters in the larger body of
text.

• It is always possible to construct a scenario with a
worst case complexity of O(MN). This, however, is
likely to happen only if the prime number used for
hashing is small.

22

2)
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case.
Explain why this is its running time. I don’t care what it does.
I only care about its running time…

 WhatEver(int m)

 FOR i=1 TO m
 FOR j=1 TO m
 x=m; WHILE x>1 DO { x=x/2; y=m;
 WHILE y>1 DO y=y/2 }

n = |m| ~ log m. Therefore running time is 𝛩(m2 log2 m)= 𝛩(22n n2)

Comment about input size…

2)
Write any algorithm that runs in time 𝛩(n2 log2 n) in worse case.
Explain why this is its running time. I don’t care what it does.
I only care about its running time…

 WhatEver(int[] A)

 n = A.length;
 FOR i=1 TO n
 FOR j=1 TO n
 x=n; WHILE x>1 DO { x=x/2; y=n;
 WHILE y>1 DO y=y/2 }

Comment about input size…

1Strings and Pattern Matching

STRINGS AND PATTERN
MATCHING

• Brute Force,Rabin-Karp, Knuth-Morris-Pratt

• Regular Expressions

What’s up?

I’m looking for some string.

That’s quite a trick considering
that you have no eyes.

Oh yeah? Have you seen your writing?
It looks like an EKG!

23

16Strings and Pattern Matching

The Knuth-Morris-Pratt
Algorithm

• The Knuth-Morris-Pratt (KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

• A failure function (f) is computed that indicates how
much of the last comparison can be reused if it fails.

• Specifically, f is defined to be the longest prefix of
the pattern P[0,..,j] that is also a suffix of P[1,..,j]
- Note: not a suffix of P[0,..,j]

• Example:
- value of the KMP failure function:

• This shows how much of the beginning of the string
matches up to the portion immediately preceding a
failed comparison.
- if the comparison fails at (4), we know the a,b in

positions 2,3 is identical to positions 0,1

j 0 1 2 3 4 5
P[j] a b a b a c
f(j) 0 0 1 2 3 0

23

17Strings and Pattern Matching

The KMP Algorithm (contd.)
• the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input: Strings T (text) with n characters and P

(pattern) with m characters.
Output: Starting index of the first substring of T

matching P, or an indication that P is not a
substring of T.

f ← KMPFailureFunction(P) {build failure function}
i ← 0
j ← 0
while i < n do

if P[j] = T[i] then
if j = m - 1 then

return i - m - 1 {a match}
i ← i + 1
j ← j + 1

else if j > 0 then {no match, but we have advanced}
j ← f(j-1) {j indexes just after matching prefix in P}

else
i ← i + 1

return “There is no substring of T matching P”

23

18Strings and Pattern Matching

The KMP Algorithm (contd.)
•The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j to
the length of the longest prefix of P that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do
if P[j] = P[i] then
{we have matched j + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{j indexes just after a prefix of P that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1

23

20Strings and Pattern Matching

The KMP Algorithm (contd.)
• Time Complexity Analysis

• define k = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], then i increases by 1, as does j

k remains the same.
- 2) if T[i] != P[j] and j > 0, then i does not change

and k increases by at least 1, since k changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and
k increases by 1 since j remains the same.

• Thus, each time through the loop, either i or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes that f has already been
computed.

• However, f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction is O(m)

• Total Time Complexity: O(n + m)

23

20Strings and Pattern Matching

The KMP Algorithm (contd.)
• Time Complexity Analysis

• define k = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], then i increases by 1, as does j

k remains the same.
- 2) if T[i] != P[j] and j > 0, then i does not change

and k increases by at least 1, since k changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and
k increases by 1 since j remains the same.

• Thus, each time through the loop, either i or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes that f has already been
computed.

• However, f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction is O(m)

• Total Time Complexity: O(n + m)

20Strings and Pattern Matching

The KMP Algorithm (contd.)
• Time Complexity Analysis

• define k = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], then i increases by 1, as does j

k remains the same.
- 2) if T[i] != P[j] and j > 0, then i does not change

and k increases by at least 1, since k changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and
k increases by 1 since j remains the same.

• Thus, each time through the loop, either i or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes that f has already been
computed.

• However, f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction is O(m)

• Total Time Complexity: O(n + m)

23

21Strings and Pattern Matching

Regular Expressions
• notation for describing a set of strings, possibly of

infinite size

• ε denotes the empty string

• ab + c denotes the set {ab, c}

• a* denotes the set {ε, a, aa, aaa, ...}

• Examples
- (a+b)* all the strings from the alphabet {a,b}
- b*(ab*a)*b* strings with an even number of a’s
- (a+b)*sun(a+b)* strings containing the pattern

“sun”
- (a+b)(a+b)(a+b)a 4-letter strings ending in a

23

23Strings and Pattern Matching

Finite State Automaton
• “machine” for processing strings

0 1

bb

a

a

321
aba

0

6

4
b

b

a
a

2 3

5

1 ee

e

e

e

e
a,b

24Strings and Pattern Matching

Composition of FSA’s
e

a

a
e

b

e

ee

a be

a

e

e

23

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

24

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

data

24

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

24

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)
18Strings and Pattern Matching

The KMP Algorithm (contd.)
•The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j to
the length of the longest prefix of P that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do
if P[j] = P[i] then
{we have matched j + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{j indexes just after a prefix of P that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

24

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

24

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

24

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

characters

24

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

24

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

24

37Strings and Pattern Matching

Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies the prefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” does not satisfy the prefix

rule (the code of a is a prefix of the codes of j and v)

• we use an encoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

38Strings and Pattern Matching

Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A B R A C A D A B R A

See? Decodes like magic...

39Strings and Pattern Matching

Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100

40Strings and Pattern Matching

Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C

25

48Strings and Pattern Matching

Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input: String X of length n
Output: Encoding trie for X

Compute the frequency f(c) of each character c of X.
Initialize a priority queue Q.

for each character c in X do
Create a single-node tree T storing c
Q.insertItem(f(c), T)

while Q.size() > 1 do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new tree T with left subtree T1 and right

subtree T2.
Q.insertItem(f1 + f2)

return tree Q.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)

25

26

26

