Winter 2016
 COMP-250: Introduction to Computer Science Lecture 26, April I4, 2016

REVIEW SESSION

- This is a multiple choices exam. For each question, only one answer can be provided.
- Answer the questions on the multiple choice page, using a LEAD PENCIL.
- You have 180 minutes to write the exam.
- This exam is worth 50% of your total mark.
- ALL DOCUMENTATION IS PERMITTED including books, notes and printed slides.
- No electronic devices are allowed.
- If you believe that none of choices provided for a given question are correct, provide the answer that is the closest to being correct.
- This exam contains 40 questions on 16 pages.
- This examination is printed on both sides of the paper.
- THIS EXAMINATION PAPER MUST BE RETURNED.
- The Examination Security Monitor Program detects pairs of students with unusually similar answer patterns on multiple-choice exams. Data generated by this program can be used as admissible evidence, either to initiate or corroborate an investigation or a charge of cheating under Section 16 of the Code of Student Conduct and Disciplinary Procedures.
- This is a multiple choices exam. For each question, only one answer can be provided.
- Answer the questions on the multiple choice page, using a LEAD PENCIL.
- You have 180 minutes to write the exam.
- This exam is worth 50% of your total mark.
- ALL DOCUMENTATION IS PERMITTED including books, notes and printed slides.
- No electronic devices are allowed.
- If you believe that none of choices provided for a given question are correct, provide the answer that is the closest to being correct.
- This exam contains 40 questions on 16 pages.
- This examination is printed on both sides of the paper.
- THIS EXAMINATION PAPER MUST BE RETURNED.
- The Examination Security Monitor Program detects pairs of students with unusually similar answer patterns on multiple-choice exams. Data generated by this program can be used as admissible evidence, either to initiate or corroborate an investigation or a charge of cheating under Section 16 of the Code of Student Conduct and Disciplinary Procedures.

Winter 2016
 COMP-250: Introduction to Computer Science
 Lectures I-26, January-April, 2016

Algorithms

- Informal definition

An algorithm is the specification of a sequence of instructions to be carried out by a processor.

- Algorithms can be run on a computer, but they don't have to:
- Mayas had algorithms to predict solar eclipses centuries in advance
- Egyptians had algorithms to build pyramids
- Indians had algorithms for factorizing polynomials
- Greeks had algorithms to build all kinds of geometric construction using only a compass and straight lines.

Music SCORE

n6 The blessed son of God

Assembly Instruction

- LEGO (RoboArm (Machine)) instructions

Computer Program

- C program

Fight around I503 about calculation method

TOMORROW ...???

Computer Science

- Computer Science is the study of algorithms for computing machines.
- (Formal) Definition of an Algorithm

A well-ordered collection of unambiguous effectively computable operations that when executed produces a result and halts in a finite amount of time.

Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture 2, January 14, 2016

Grade School Algorithms

Representation quite inefficient "+" easy to describe

Grade School Algorithms

Representation quite inefficient "X" easy to describe

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as arrays of digits

+	1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9	10
2	3	4	5	6	7	8	9	10	11
3	4	5	6	7	8	9	10	11	12
4	5	6	7	8	9	10	11	12	13
5	6	7	8	9	10	11	12	13	14
6	7	8	9	10	11	12	13	14	15
7	8	9	10	11	12	13	14	15	16
8	9	10	11	12	13	14	15	16	17
9	10	11	12	13	14	15	16	17	18

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as arrays of digits

$$
\begin{array}{r}
0001 \\
+\quad 4343 \\
+\quad 4519 \\
\hline 6862
\end{array}
$$

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as arrays of digits

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i \leftarrow 0 \text { to } N-1 \text { do } \\
& r[i] \leftarrow R[a[i], b[i], \text { carry }] \\
& \text { carry } \leftarrow L[a[i], b[i], \text { carry }] \\
& \text { end for } \\
& r[N] \leftarrow \text { carry }
\end{aligned}
$$

Grade School Algorithms

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as arrays of digits
carry $=0$
for $i=0$ to $N-1$ do

$$
\begin{aligned}
& r[i] \leftarrow(a[i]+b[i]+\text { carry }) \% 10 \\
& \text { carry } \leftarrow(a[i]+b[i]+\text { carry }) / 10
\end{aligned}
$$

end for
$r[N] \leftarrow$ carry

Grade School Algorithms

$\overline{\text { Algorithm } 1 \text { Addition (base } \boldsymbol{\beta} \text {): Add two } N \boldsymbol{\beta} \text {-git numbers } a \text { and } b \text { which are represented as }}$ arrays of β-gits

Grade School Algorithms

$\overline{\text { Algorithm } 1 \text { Addition (base } \boldsymbol{\beta} \text {): Add two } \boldsymbol{\beta} \text {-git numbers } a \text { and } b \text { which are represented as }}$ arrays of $\boldsymbol{\beta}$-gits
carry $=0$
for $i=0$ to $N-1$ do

$$
\begin{aligned}
& r[i] \leftarrow(a[i]+b[i]+\text { carry }) \% \boldsymbol{\beta} \\
& \text { carry } \leftarrow(a[i]+b[i]+\text { carry }) / \boldsymbol{\beta}
\end{aligned}
$$

end for
$r[N] \leftarrow$ carry

Subtraction

6343
- 4519

Grade School Algorithms

$$
\begin{array}{r}
51_{1}{ }_{1} \\
63 \not 3 \\
-\quad 4519 \\
\hline 1824
\end{array}
$$

Grade School Algorithms

Algorithm 2 Multiplication (base 10) of two numbers a and b

Super Teacher Worksheets - www,superteacherworksheets_com

Grade School Algorithms

Multiplication

for $j=0$ to $N-1$ do carry $\leftarrow 0$
for $i=0$ to $N-1$ do

$$
\text { prod } \leftarrow(a[i] * b[j]+\text { carry })
$$

$$
\operatorname{tmp}[j][i+j] \leftarrow \operatorname{prod} \% 10
$$

$$
\text { carry } \leftarrow \operatorname{prod} / 10
$$

end for
$t m p[j][N+j] \leftarrow$ carry end for

Multiplication

carry $\leftarrow 0$
for $i=0$ to $2 * N-1$ do

$$
\text { sum } \leftarrow \text { carry }
$$

$$
\text { for } j=0 \text { to } N-1 \text { do }
$$

$$
\operatorname{sum} \leftarrow \operatorname{sum}+\operatorname{tmp}[j][i]
$$

end for
$r[i] \leftarrow \operatorname{sum} \% 10$
carry \leftarrow sum/10
end for
$r[2 * N] \leftarrow \operatorname{carr} y$

Multiplication

```
Algorithm 2 Multiplication (base
    for \(j=0\) to \(N-1\) do
        carry \(\leftarrow 0\)
        for \(i=0\) to \(N-1\) do
            prod \(\leftarrow(a[i] * b[j]+\) carry \()\)
            \(t m p[j][i+j] \leftarrow \operatorname{prod} \% \boldsymbol{\beta}\)
            carry \(\leftarrow \operatorname{prod} / \boldsymbol{\beta}\)
        end for
        \(t m p[j][N+j] \leftarrow\) carry
    end for
```

$$
\begin{aligned}
& \text { carry } \leftarrow 0 \\
& \text { for } i=0 \text { to } 2 * N-1 \text { do } \\
& \quad \text { sum } \leftarrow \operatorname{carry} \\
& \text { for } j=0 \text { to } N-1 \text { do } \\
& \quad \text { sum } \leftarrow \operatorname{sum}+\operatorname{tmp}[j][i] \\
& \text { end for } \\
& r[i] \leftarrow \operatorname{sum} \% \boldsymbol{\beta} \\
& \text { carry } \leftarrow \operatorname{sum} / \boldsymbol{\beta} \\
& \text { end for } \\
& r[2 * N] \leftarrow \operatorname{carry} \\
& \hline
\end{aligned}
$$

Long Division

723 | 41672542996

Grade School Algorithms

> 5 ...
> 723 | 41672542996

Grade School Algorithms

$$
57638372
$$

$41672542996 / 723=57638372$ $41672542996 \div 723=50$

Analysis of Addition

linear $\left\{\begin{array}{l}\operatorname{cst}\left\{\begin{array}{l}\text { carry }=0 \\ \text { for } i=0 \text { to } N-1 \text { do } \\ \operatorname{cst}\left\{\begin{array}{l}r[i] \leftarrow(a[i]+b[i]+\text { carry }) \% 10 \\ \text { carry } \leftarrow(a[i]+b[i]+\text { carry }) / 10\end{array}\right. \\ \quad \text { end for }\end{array}\right. \\ \operatorname{cst}\{r[N] \leftarrow \text { carry }\end{array}\right.$

$$
\operatorname{Time}(N)=C_{1}+C_{2} \times N
$$

Analysis of Multiplication

for $j=0$ to $N-1$ do

 cst $\{$ carry $\leftarrow 0$ $+\quad \operatorname{prod} \leftarrow(a[i] * b[j]+$ carry $)$ $t m p[j][i+j] \leftarrow \operatorname{prod} \% 10$ carry $\leftarrow \operatorname{prod} / 10$ - end for
cst $\{t m p[j][N+j] \leftarrow$ carry end for

Analysis of Multiplication

 cst $\{\quad \operatorname{carry} \leftarrow 0$for $i=0$ to $2 * N-1$ do
cst $\{$ sum \leftarrow carry
จт̣Ұехрепб for $j=0$ to $N-1$ do cst $\{$ sum \leftarrow sum + tmp $[j][i]$ end for
cst $\left\{\begin{array}{l}r[i] \leftarrow \text { sum } \% 10 \\ \text { carry } \leftarrow \text { sum } / 10\end{array}\right.$ end for
cst $\{\quad r[2 * N] \leftarrow \operatorname{carry}$

Analysis of Algorithms

```
    for \(j=0\) to \(N-1\) do
        carry \(\leftarrow 0\)
        for \(i=0\) to \(N-1\) do
            prod \(\leftarrow(a[i] * b[j]+\) carry \()\)
            \(t m p[j][i+j] \leftarrow \operatorname{prod} \% 10\)
            carry \(\leftarrow \operatorname{prod} / 10\)
        end for
        \(t m p[j][N+j] \leftarrow\) carry
    end for
```

Algorithm 2 Multiplication (base 10) of two numbers a and b

```
carry \(\leftarrow 0\)
for \(i=0\) to \(2 * N-1\) do
    sum \(\leftarrow\) carry
    for \(j=0\) to \(N-1\) do
            sum \(\leftarrow\) sum + tmp \([j][i]\)
    end for
    \(r[i] \leftarrow \operatorname{sum} \% 10\)
    carry \(\leftarrow\) sum/10
end for
\(r[2 * N] \leftarrow\) carry
```

Time (N) $=\mathrm{C}_{1}+\mathrm{C}_{2} \times \mathrm{N}+\mathrm{C}_{3} \times \mathrm{N}^{2}$

Analysis of Algorithms

Addition

$$
\operatorname{Time}(N)=C_{1}+C_{2} \times N
$$

Multiplication

$\operatorname{Time}(N)=C_{1}+C_{2} \times N+C_{3} \times N^{2}$

Analysis of Algorithms

Addition

$$
\text { Time (N) is } O(N)
$$

Multiplication

$$
\text { Time }(\mathbb{N}) \text { is } O\left(N^{2}\right)
$$

Analysis of Algorithms

3
 Analysis of Algorithms

Base 8 vs Base 2

(2143) 8
=(????)2

Base 8 vs Base 2

$$
=\left(\begin{array}{l}
010001100101)_{2} \\
=(10001100101)_{2}
\end{array}\right.
$$

Powers of 2 in Base 10

$$
\begin{array}{lll}
2^{0}=1 & 2^{1}=2 & 2^{2}=4 \\
2^{3}=8 & 2^{4}=16 & 2^{5}=32 \\
2^{6}=64 & 2^{7}=128 & 2^{8}=256 \\
2^{9}=512 & 2^{10}=1024 & 2^{11}=2048 \\
2^{12}=4096 & 2^{13}=8192 & 2^{14}=16384 \\
2^{15}=32768 & 2^{16}=65536 \\
2^{32}=4294967296
\end{array}
$$

Powers of 10 in Base 2

$10^{0}=1$
$10^{1}=1010$
$10^{2}=1100110$
$10^{3}=1111101000 \approx 2^{10}$
$10^{4}=10011100010000$

to Base 2

Algorithm 3 Convert integer to binary
INPUT: a number m
OUTPUT: the number m expressed in base 2 using a bit array $b[$]
$i \leftarrow 0$
while $m>0$ do
$b[i] \leftarrow m \% 2$
$m \leftarrow m / 2$
$i \leftarrow i+1$
end while

to Base β

Algorithm 3 Convert integer to binary
INPUT: a number m
OUTPUT: the number m expressed in base $\boldsymbol{\beta}$ using a bit array $b[$]
$i \leftarrow 0$
while $m>0$ do
$b[i] \leftarrow m \% \boldsymbol{\beta}$
$m \leftarrow m / \boldsymbol{\beta}$
$i \leftarrow i+1$
end while

$$
\begin{aligned}
& \text { Fractional Numbers } \\
& 26.375 \\
& =(11010 . \quad)_{2} \\
& 0.375 \\
& =1 / 4+1 / 8 \\
& =(0.011)_{2}
\end{aligned}
$$

26.375
$=(11010.011)_{2}$

More Binary
 Representation

Representation

binary
00000000
00000001
:
01111111
10000000
10000001
:
11111111
$\frac{\text { signed }}{0}$
1
:

$$
\begin{array}{ll}
127 & 127 \\
-128 & 128 \\
-127 & 129 \\
: & : \\
-1 & 255
\end{array}
$$

unsigned
0
1

binary	$\frac{\text { signed }}{0}$	$\frac{\text { unsigned }}{0}$
0000000000000000	1	1
0000000000000001	$:$	$:$
$:$	127	127
0000000001111111	128	128
0000000010000000	129	129
0000000010000001	$:$	
$:$	$2^{15}-1$	$2^{15}-1$
0111111111111111	-2^{15}	2^{15}
1000000000000000	$-2^{15}+1$	$2^{15}+1$
1000000000000001	$:$	$2^{16}-129$
$:$	-129	$2^{16}-128$
1111111101111111	-128	$2^{16}-127$
1111111110000000	-127	$2^{16}-1$
111111110000001	$:$	-1
$:$		
1111111111111111	-1	

A Byte

10100110

A Byte

00010110000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000001010011000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000

An address

00010110000000000000000000000000 $00000000 \quad 0000000000000000000000$ 00000000 Ou 100000000000000000000 000000000000 OQ 0000000000000000 0000000000000 r 0000000000000000 00000000000000001010011000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000

| 00000000 | 00000000 | 00000000 | 00000000 |
| :--- | :--- | :--- | :--- | :--- |
| 00000000 | 00000000 | 00000000 | 00010110 |
| 00000000 | 00000000 | 0000000 | 00000000 |
| 00000000 | 00000000 | 0,00000 | 00000000 |
| 00000000 | 00000000 | 00000 | 00000000 |
| 00000000 | 00000000 | 10100110 | 00000000 |
| 00000000 | 00000000 | 00000000 | 00000000 |
| 00000000 | 00000000 | 00000000 | 00000000 |
| 00000000 | 00000000 | 00000000 | 00000000 |
| 00000000 | 00000000 | 00000000 | 00000000 |
| 00000000 | 00000000 | 00000000 | 00000000 |
| 00000000 | 00000000 | 00000000 | 00000000 |

Java Primitive Types

Boolean 00000000000000000000000000000000
Byte 00000000000000000000000000000000
Char 00000000000000000000000000000000
Short 00000000000000000000000000000000
Int 00000000000000000000000000000000
Long

00000000	10100110	00000000	00000000
00000000	00000000	00000000	00000000

Float 00000000

Double

00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000

(32-bit) addresses

00000000	00000000	00000000	00010010
00000000	00000000	00000000	00101010
00000000	000000	0	0000000
00000000	000000	00000000	
00000000	0000000	10100110	00000000
00000000	0000000	00000000	00000000
00000000	00000000	0000000	00000000
00000000	00000000	000000	00000000
00000000	00000000	000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000

Java Reference Types

32-Bit

| Address | 00000000 | 00000000 | 00000000 | 00000000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Address | 00000000 | 10100110 | 00000000 | 00000000 |
| | 00000000 | 00000000 | 00000000 | 00000000 |

64 -Bit

	byte	[]a	
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000

```
a=new byte[3];
a: 00000000000000000000000000010010 00000000000000001000000000000000 0000000000000000100000000000000 0000000000000000 000000 00000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000
```

```
\(a[0]=166 ;\)
a: 00000000000000000000000000010010 00000000000000001000000000000000 0000000000000000100000000000000 0000000000000000 000000 00000000 00000000000000001010011000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000
```


$b=n e w ~ i n t[2] ;$

| $\mathrm{a}: ~ 00000000$ | 00000000 | 00000000 | 00010010 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~b}: ~ 00000000$ | 00000000 | 00000000 | 00101010 |

00000000000000000000000000000 00000000000000 00000000000000 0000000000000001010011000000000 000000000000000 (0000000000000000 00000000000000001000000000000000 0000000000000000100000000000000 0000000000000000 , 00000000000000 00000000000000000000000000000000 | 00000000 | 00000000 | 00000000 | 00000000 |
| :--- | :--- | :--- | :--- |
| 00000000 | 00000000 | 00000000 | 00000000 |

b[I]=-।;
 000000000000000100000000000000 00000000000000 000000 00000000 0000000000000001010011000000000 000000000000000 (0000000000000000 00000000000000001000000000000000 0000000000000000100000000000000 0000000000000000 , 00000000000000 00000000000000000000000000000000 00000000000000001111111111111111 $11111111 \mid 111111110000000000000000$

Sorting

ALGORITHM: INSERTION SORT

INPUT: an array $a[$] with N elements that can be compared $(<,=,>)$
OUTPUT: the array $a[$] containing the same elements, in increasing order for $k=1$ to $N-1$ do
$t m p \leftarrow a[k]$
$i \leftarrow k$
while $(i>0) \&(t m p<a[i-1])$ do

$$
a[i] \leftarrow a[i-1]
$$

$$
i \leftarrow i-1
$$

end while

$$
a[i]=t m p
$$

end for

Analysis of Insertion Sort

ALGORITHM: INSERTION SORT

INPUT: an array $a[$] with N elements that can be compared $(<,=,>)$
OUTPUT: the array $a[$] containing the same elements, in increasing order
for $k=1$ to $N-1$ do
$\left.\begin{array}{l}t m p \leftarrow a[k] \\ i \leftarrow k\end{array}\right\}$ cst
while $(i>0) \&(t m p<a[i-1])$ do

$$
\left.\begin{array}{l}
a[i] \leftarrow a[i-1] \\
i \leftarrow i-1
\end{array}\right\} \text { cst }
$$

$$
i \leftarrow i-1
$$

end while
$a[i]=t m p \quad\}$ cst
end for

Analysis of Insertion Sort

ALGORITHM: INSERTION SORT

INPUT: an array $a[$] with N elements that can be compared $(<,=,>)$
OUTPUT: the array $a[$] containing the same elements, in increasing order
for $k=1$ to $N-1$ do
$\left.\begin{array}{l}t m p \leftarrow a[k] \\ i \leftarrow k\end{array}\right\}$ cst
while $(i>0) \&(t m p<a[i-1])$ do

$$
a[i] \leftarrow a[i-1] \quad\} \text { cst }
$$

$$
i \leftarrow i-1
$$

end while

$$
a[i]=t m p \quad\} \text { cst }
$$

end for

$$
\operatorname{Time}(\mathrm{N}) \geq \mathrm{C}_{1}+\mathrm{C}_{2} \times \mathrm{N}
$$

Analysis of Insertion Sort

ALGORITHM: INSERTION SORT

INPUT: an array $a[$] with N elements that can be compared $(<,=,>)$
OUTPUT: the array $a[$] containing the same elements, in increasing order
for $k=1$ to $N-1$ do
$\left.\begin{array}{l}\operatorname{tmp} \leftarrow a[k] \\ i \leftarrow k\end{array}\right\}$ cst
while $(i>0) \&(t m p<a[i-1])$ do
$a[i] \leftarrow a[i-1] \quad\}$ cst
$i \leftarrow i-1$
end while
$a[i]=t m p \quad\}$ cst
end for
$\operatorname{Time}(\mathrm{N}) \leq \mathrm{C}_{1}+\mathrm{C}_{2} \times \mathrm{N}+\mathrm{C}_{3} \times \mathrm{N}^{2}$

Analysis of Algorithms

Best Case

$$
\text { Time(N) is } \boldsymbol{\Omega}(\mathrm{N})
$$

Worst Case

$$
\text { Time }(\mathbb{N}) \text { is } O\left(\mathbb{N}^{2}\right)
$$

Linked Lists

List $=$ ordered set of elements.

$$
\left(a_{0}, a_{1}, \ldots, a_{\text {Size-1 }}\right)
$$

Size $=$ number of elements.

Array of integers:

$$
\left.\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
{[5,2,} & 9,3, & 3,1,7,0
\end{array}\right]
$$

Array of shapes:

Adding element to Front

// add new element to front of the list
// assuming that there is room left in the array //

$$
\begin{aligned}
& \text { for (i = size; i > 0; i--) } \\
& a[i]=a[i-1] \\
& a[0]=\text { new element } \\
& \text { size }=\text { size }+1
\end{aligned}
$$

Removing element at Front

// remove the element at front of the list //
for (i = 1; i < size-1; i++) $a[i-1]=a[i]$
a [siz e-1] = null
size = size - 1

Adding/Removing at End

// add new last element to the list
// assuming that there is room left in the array //

$$
\begin{aligned}
& \text { a[size] = new element } \\
& \text { size }=\text { size }+1
\end{aligned}
$$

// remove the last element from the list //

$$
\begin{aligned}
& \mathrm{a}[\text { size }-1]=\text { null } \\
& \text { size }=\text { size }-1
\end{aligned}
$$

Array of shapes:

$$
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

Linked list of shapes:

(Singly) Linked List Node

class SNode\{
Type
element;
SNode
next;
\}

class SLinkedList\{ SNode head; SNode integer tail; size;
\}

SNode
SNode
integer
head; tail; size;
head tail size

Hemoverinstot

tmp = head;

head = head.next;
tmp.next $=$ null; size = size - 1;
\}
head tail size
newNode


```
removeLast() \{
if (head == tail)\{
    head = null;
    tail = null;
    size = 0;
\}
else\{
    tmp = head;
    while (tmp.next != tail)\{
        tmp = tmp.next;
    \}
    tmp.next = null;
    tail = tmp;
    size = size - 1;
\}
\}
```


removeLast() \{

```
if (head == tail){
    head = null;
    tail = null;
    size = 0;
}
```


class SNode<E>\{

E element

SNode<E> next
class SLinkedList<E>\{ SNode<E> head; SNode<E> tail;
int
size;
\}
element next

E
element
SNode<E> next
class SLinkedList<E>\{ SNode<E> head; SNode<E> tail;
int size;
\}
SLinkedList<Shape> shapelist = new SLinkedList<Shape>(); SLinkedList<Student> studentlist = new SLinkedList<Student>();

Java Generics
 class DNode<E>\{
 E element;
 DNode<E> next;
 DNode<E> prev;
 \}
 class DLinkedList<E>\{
 DNode<E> head;
 DNode<E> tail;
 int size;
 \}

DLinkedList<Shape> shapelist = new DLinkedList<Shape>(); DLinkedList<Student> studentlist = new DLinkedList<Student>();

(Doubly) Linked List Node

class DNode<E>\{
E
element;
DNode<E> next;
DNode<E> prev;
\}
element next prev

if $\quad(i<s i z e / 2)\{$
tmp $=$ head
index $=0$
while (index < i) \{
tmp $=$ tmp.next
\quad index++
\}
head tail size

$$
\operatorname{tmp}=\text { tail }
$$

$$
\text { index = size - } 1
$$

while (index > i) \{

$$
\mathrm{tmp}=\mathrm{tmp} \cdot \mathrm{prev}
$$

index--

$$
\text { \} }
$$

return tmp
head tail size
remove(node) \{

$$
\begin{aligned}
\text { node.prev. next } & =\text { node.next } \\
\text { node.next.prev } & =\text { node.prev; } \\
\text { size } & =\text { size-1; }
\end{aligned}
$$

 remove (node) \{

$$
\begin{aligned}
\text { node.prev. next } & =\text { node.next } \\
\text { node.next.prev } & =\text { node.prev; } \\
\text { size } & =\text { size-1; }
\end{aligned}
$$

Array vs Linked List

Linked List operations

```
add(i,element) // Inserts element into the i-th position
    // (and increments the indices of elements that were
    // previously at index i or up)
set(i,element) // Replaces the element in the i-th position
remove(i) // Removes the i-th element from list
get(i) // Returns the i-th element (but doesn't alter list)
clear() // Empties list.
isEmpty() // Returns true if empty, false if not empty.
size() // Returns number of elements in the list
```


LinkedList<Student>

studentList = new LinkedList<Student>();

- implemented as doubly linked list (with dummies)
- Node class is private

Java LinkedList

LinkedList
add(element)
add(i,element)
set(i,element)
remove(i)
get(i)
clear()
isEmpty()
size()

1
n
n
n
n
1
1
1

Java LinkedList

$$
\begin{aligned}
& \text { for }(j=1 ; j<n ; j++) \\
& \quad \operatorname{print}(\text { studentList.get(} j \text {)) }
\end{aligned}
$$

$$
\text { Time }(\mathrm{n}) \text { is } \boldsymbol{\Omega}\left(\mathrm{n}^{2}\right)
$$

- implementation using arrays of growing sizes
- cannot access using a[i] notation

LinkedList vs ArrayList

add(element) add(i,element) set(i,element)
remove(i)
get(i)
clear()
isEmpty()
size()
LinkedList ArrayList

1	1
n	n
n	1
n	n
n	1
1	1
1	1
1	1

ADTs

- An Abstract Data Type is an abstraction of a data structure: no coding is involved.
- The ADT specifies:
- what can be stored in it
- what operations can be done on/by it.
- There are lots of formalized and standardized ADTs (in Java).

ADTs

- For example, if we are going to model a bag of marbles as an ADT, we could specify that - this ADT stores marbles
- this ADT supports putting in a marble and getting out a marble.
- In this course we are going to learn a lot of different standard ADTs. (stacks, queues, trees...)
- (A bag of marbles is not one of them.)

Stack

- A stack is a container of objects that are inserted and removed according to the last-in-first-out (LIFO) principle.
- Objects can be inserted at any time, but only the last (the most-recently inserted) object can be removed.
- Inserting an item is known as "pushing" onto the stack.
- "Popping" off the stack is synonymous with removing an item.

Stack

- A stack is an ADT that supports two main methods:
- push(o): Inserts object o onto top of stack
- pop(): Removes the top object of stack and returns it; if the stack is empty then an error occurs.
- The following support methods should also be defined:
- size(): returns the number of objects in stack
- isEmpty(): returns a boolean indicating if stack is empty.
- top(): returns the top object of the stack, without removing it; if the stack is empty then an error occurs.
push (3)
push (6)
push (4)
push(1)
pop()
push(5)
pop()
pop()

			1		5		
		4	4	4	4	4	
	6	6	6	6	6	6	6
3	3	3	3	3	3	3	3
--	--	-	-	--	--	--	--

Examples:

$3+(4-x) * 7+(y-2 *(2+x))$.

Examples:

(([])) [] \{ [] \}

Examples:

$$
3+(4-1) * 7+(6-2 *(2+3))
$$

$+\quad+$

$$
111
$$

$$
\star \quad * \quad * \quad * \quad *
$$

$$
1111111111
$$

$+\underset{+}{+}+\underset{+}{+}+\underset{+}{+}+\underset{+}{+}+\underset{-}{+}$
$3+(4-1) * 7+(6-2 *(2+3))$

3

$\begin{array}{llllllll} & 2 & 2 & 2 & 2 & 2 & 2 & 5 \\ 2\end{array}$
$\begin{array}{lllllllllll}6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & -4\end{array}$

Processing arithmetics

t=gettoken ()
while type (t) \neq eol do
if type(t)=number then
if type(t)=operator then
if $t=$ "(" then
if $t=$ ")" then
t=gettoken ()
while not isemptyO() do op=popO ()
arg2=popA()
arg1=popA()
pushA (exec (arg1,op, arg2))
return popA()

Processing arithmetics

if type(t)=number then pushA(t)
if type(t)=operator then
if prio(t) Sprio(topo())
then op=popo()
arg2=popA()
arg1=popA() pushA (exec (arg1,op,arg2)) pusho(t)

Processing arithmetics

```
if t="(" then pushO(t)
if t=")" then
    op=popO()
while op\not="(" do
    arg2=popA()
    arg1=popA()
    pushA(exec(arg1,op,arg2))
    op=popO()
```

```
t=gettoken()
while type(t)\not=eol do
    if type(t)=number then pushA(t)
    if type(t)=operator then
        if prio(t)\leqprio(topO())
        then op=popO()
                arg2=popA()
                arg1=popA()
                pushA(exec(arg1,op,arg2))
        pusho(t)
    if t="(" then pushO(t)
    if t=")" then
        op=popO()
        while op\not="(" do
            arg2=popA()
            arg1=popA()
            pushA(exec(arg1,op,arg2))
            op=popO()
    t=gettoken()
while not isemptyO() do
    op=popO()
    arg2=popA()
    arg1=popA()
    pushA(exec(arg1,op,arg2))
return popA()
```


Examples:

$3+(4-1) * 7+(6-2 *(2+3))$

341 - 7 * + $6223+$ * +
3
225
$1 \quad 7 \quad 222210$
$443321666666-4$
$\begin{array}{llllll}3 & 3 & 3 & 3 & 3 & 3242424242424242420\end{array}$

Stacks in the Java Virtual Machine

- Each process running in a Java program has its own Java Method Stack.
- Each time a method is called, it is pushed onto the stack.
- The choice of a stack for this operation allows Java to do several useful things:
- Perform recursive method calls
- Print stack traces to locate an error

Java Program
Java Stack

- The code for our new algorithm:

Algorithm computeSpan2(P):
Input: An n-element array P of numbers representing stock prices
Output: An n-element array S of numbers such that $S[i]$ is the span of the stock on day i
Let D be an empty stack

$$
\text { for } i \leftarrow 0 \text { to } n-1 \text { do }
$$

done \leftarrow false
while $\operatorname{not}(D$. isEmpty() or done) do
if $P[i] \geq P[D . \operatorname{top}()]$ then $D . \operatorname{pop}()$
else done \leftarrow true
if D.isEmpty () then $h \leftarrow-1$
else
$h \leftarrow D$.top()
$S[i] \leftarrow i-h$
D.push(i)
return S

\square

Queue ADT

Queue

- A queue differs from a stack in that its insertion and removal routines follows the first-in-first-out (FIFO) principle.
- Elements may be inserted at any time, but only the element which has been in the queue the longest may be removed.
- Elements are inserted at the rear (enqueued) and removed from the front (dequeued).
- The queue has two fundamental methods:
- enqueue(o): Inserts object o at rear of the queue
- dequeue(): Removes object from front of queue and returns it; an error occurs if queue is empty.
- These support methods should also be defined:
- size(): Returns number of objects in the queue - isEmpty(): Returns a boolean value that indicates whether the queue is empty
- front(): Returns, but not remove, the front object in the queue; an error occurs if queue is empty.

0123456
OPERATION
add(a)
add (b)
remove()
add (c)
add(d)
add (e)
remove()
add(f)
remove()
add (g)

	0	0
a	0	1
ab	0	2
b	1	1
bc	1	2
bcd	1	3
bcde	1	4
cde	2	3
cdef	2	4
def	3	3
defg	3	4

tmp = head;
head = head.next; tmp.next = null; size = size - 1; \}

Queue as List
addLast (newNode) \{
tail.next = newNode;
tail = tail.next;
size $=$ size +1 ; \}

Queue as Array

Array of shapes:

(4)

Queue as Array

| 0 | (H) | 2 | 3 | 4 | (T) | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

head= I, tail=5, (size=5)
\square

Queue as Array

Queue as Array

```
enqueue( element ){ // array implementation
    if ( size == length)
        increase length of array // *** SEE BELOW **
    a[ (head + size) % length ] = element
    size = size + 1
}
```

```
dequeue(){
        out = a[head]
        head = (head + 1) % length
        size = size - 1
        return out
    }
```


Queue as Array

// copy the length elements to a new bigger array create a bigger array
for i $=0$ to small.length-1
big[i] = small[(head + i) \% small.length]
head $=0$
tail $=$ small.length-1
size $=$ small.length
// copy the length elements to a new bigger array create a bigger array
for i $=0$ to small.length-1
big[i] = small[(head + i) \% small.length]
head $=0$
tail $=$ small.length-1
size $=$ small.length
 Asymptotic Notation

Computational Tractability

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that tries every possible solution.

- Typically takes 2^{N} time or worse for inputs of size N.
- Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants $a>0$ and $d>0$ such that on every input of size N, its running time is bounded by a N^{d} steps.

Def. An algorithm is poly-time if the above scaling property holds.

Worst Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on any input of a given size N .

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N .

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

Worst Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.
Justification: It really works in practice!

- Although $6.02 \times 10^{23} \times \mathrm{N}^{20}$ is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used becausrimality testing the worst-case instances seem to be rare.

Why it matters ?

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Note: age of Universe $\sim 10^{10}$ years...

Computer Science Approach

 to problem solvingIf my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to efficiently solve this problem ???

I can't find an efficient algorithm, I guess I'm just too dumb.

Computer Science Approach

 to problem solvingAre there some problems that cannot be solved at all ? and, are there problems that cannot be solved efficiently ??

I can't find an efficient algorithm, because no such algorithm is possible

Computer Science Approach

 to problem solvingIf my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to efficiently solve this problem ???

I can't find an efficient algorithm, but neither can all these famous people.

Asymptotic order of Growth

 and Notation

 and Notation}

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.

Tight bounds. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.
$E x: T(n)=32 n^{2}+17 n+32$.

- $T(n)$ is $O\left(n^{2}\right), O\left(n^{3}\right), \Omega\left(n^{2}\right), \Omega(n)$, and $\Theta\left(n^{2}\right)$.
- $T(n)$ is not $O(n), \Omega\left(n^{3}\right), \Theta(n)$, or $\Theta\left(n^{3}\right)$.

Asymptotic order of Growth

 and Notation

 and Notation}

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.
$E x: \quad T(n)=32 n^{2}+17 n+32$.

- $T(n)$ is $O\left(n^{2}\right)$ since there exists $c=81$ and $n_{0}=1$ such that for all $n \geq I$ we have $T(n) \leq 32 n^{2}+17 n^{2}+32 n^{2}=81 n^{2}$.
- $T(n)$ is $\Omega\left(n^{2}\right)$ since there exists $c=I$ and $n_{0}=0$ such that for all $n \geq 0$ we have $T(n) \geq n^{2}$.
- $T(n)$ is not $O(n)$ since for all $c>0$ and $n_{0} \geq 0$ there exists $n=\left\lceil c+1 / c+n_{0}\right\rceil$ such that $T(n)>32\left(c+1 / c+n_{0}\right)^{2}+17\left(c+1 / c+n_{0}\right)+32 \geq c^{2}+c \cdot n_{0}+32 \geq \mathrm{cn}$.

Asymptotic Notation

Frequent Abuse of notation. $T(n)=O(f(n))$.

- Not transitive:

$$
\begin{aligned}
& -f(n)=5 n^{3} ; g(n)=3 n^{2} \\
& -f(n)=O\left(n^{3}\right) \text { and } g(n)=O\left(n^{3}\right) \\
& - \text { but } f(n) \neq g(n) \text { and } f(n) \neq O(g(n)) \text {. }
\end{aligned}
$$

- Better notations: $T(n) \in O(f(n))$, $T(n)$ is $O(f(n))$.

Meaningless statement. "Any comparison-based sorting algorithm requires at least $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons."

- Statement doesn't "type-check".
- The constant function $f(n)=l$ is $O(n \log n)$.
- Use Ω for lower bounds.

Frequently Used Functions

Polynomials. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$.
Polynomial time. Running time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ for some constant d independent of the input size n.

Logarithms. $\mathrm{O}\left(\log _{\mathrm{a}} \mathrm{n}\right)=\mathrm{O}\left(\log _{\mathrm{b}} \mathrm{n}\right)$ for any constants $\mathrm{a}, \mathrm{b}>0$. can avoid specifying the base

Logarithms. For every $x>0, \log n$ is $O\left(n^{x}\right)$.
log grows slower than every polynomial

Exponentials. For every $r>I$ and every $d>0, n^{d}$ is $O\left(r^{n}\right)$.

Linear Time：O（n）

Linear time．Running time is proportional to input size．

Computing the maximum．Compute maximum of n numbers a_{1}, \ldots, a_{n} ．

```
max }\leftarrow\mp@subsup{a}{1}{
for i = 2 to n {
    if (ai}>>\operatorname{max}
        max}\leftarrow\mp@subsup{a}{i}{
}
```


Linear Time: O(n)

Merge. Combine two sorted lists $A=a_{1}, a_{2}, \ldots, a_{n}$ with $B=b_{1}, b_{2}, \ldots, b_{n}$ into a sorted whole.


```
i = 1, j = 1
while (both lists are nonempty) {
    if (a}\mp@subsup{i}{i}{}\leq\mp@subsup{b}{j}{\prime})\mathrm{ append }\mp@subsup{a}{i}{}\mathrm{ to output list and increment i
    else append }\mp@subsup{b}{j}{}\mathrm{ to output list and increment j
}
append remainder of nonempty list to output list
```

Claim. Merging two lists of size n takes $O(n)$ time.
Pf. After each comparison, the length of output list increases by I.

$O(n \log n)$ Time

$O(n \log n)$ time. Arises in divide-and-conquer algorithms. also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons.

Largest empty interval. Given n time-stamps x_{1}, \ldots, x_{n} on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n $\log \mathrm{n})$ solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, find the pair that is closest.
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ solution. Try all pairs of points.

Remark. This algorithm is $\Omega\left(\mathrm{n}^{2}\right)$ and it seems inevitable in general, but this is just an illusion.

Cubic Time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_{1}, \ldots, S_{n} each of which is a subset of $\mathrm{I}, 2, \ldots, \mathrm{n}$, is there some pair of these which are disjoint?
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ solution. For each pair of sets, determine if they are disjoint.

```
foreach set Si
    foreach other set S S {
        foreach element p of Si
            determine whether p also belongs to }\mp@subsup{S}{j}{
        }
            if (no element of S Si belongs to S S )
            report that }\mp@subsup{S}{i}{}\mathrm{ and }\mp@subsup{S}{j}{}\mathrm{ are disjoint
    }
}
```


Polynomial Time: $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$

Independent set of size k . Given a graph, are there k nodes such that no two are joined by an edge?
k is a constant
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
    check whether S in an independent set
    if (S is an independent set)
        report S is an independent set
    }
}
```

- Check whether S is an independent set $=O\left(k^{2}\right)$.

- Number of k element subsets : $\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots(2)(1)} \leq \frac{n^{k}}{k!}$
- $O\left(k^{2} n^{k} / k!\right)$ is $O\left(n^{k}\right)$.

Exponential Time: $O\left(c^{n}\right)$

Independent set. Given a graph, what is the maximum size of an independent set?
$\mathrm{O}\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)$ solution. Enumerate all subsets.

```
S* \leftarrow \varnothing
foreach subset S of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far)
        update S* }\leftarrow 
    }
}
```


Induction Proofs

Predicate.

- $\mathrm{P}(\mathrm{n}): \mathrm{f}(\mathrm{n})=$ some formula in n

Statement.
$\forall \mathrm{n} \geq \mathrm{I}, \mathrm{P}(\mathrm{n})$ is true.
Proof.

- Base case: proof that $\mathrm{P}(\mathrm{I})$ is true.
- Induction step: $\forall \mathrm{n} \geq \mathrm{I}, \mathrm{P}(\mathrm{n}) \Longrightarrow \mathrm{P}(\mathrm{n}+\mathrm{I})$.

Let $\mathrm{n} \geq \mathrm{I}$.
Assume for induction hypothesis that $\mathrm{P}(\mathrm{n})$ is true and prove $\mathrm{P}(\mathrm{n}+\mathrm{I})$ is also true.

Iteration vs Recursion

- $f(n)=1+2+\ldots+n=\sum_{i=1}^{n} i$

```
f(n)
sum \leftarrow 0
for i = 2 to n {
        sum }\leftarrow\mathrm{ sum + i
}
return sum
```

- $f(n)= \begin{cases}0 & \text { if } n=0 \\ f(n-I)+n & \text { if } n>0\end{cases}$

```
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```


Generalized Induction Proofs

Predicate.

- $P(n): f(n)=$ some formula in n

Statement.
For all $n \geq I, P(n)$ is true.
Proof.

- Base case: proof that $\mathrm{P}(\mathrm{I})$ is true.
- Induction step: let $\mathrm{n} \geq 1$. Assume for induction hypothesis that $\mathrm{P}(\mathrm{I}) \ldots \mathrm{P}(\mathrm{n})$ are all true. We show $\mathrm{P}(\mathrm{n}+\mathrm{I})$ is also true.

Recursion:

Fibonacci Sequence

- fib(n) $= \begin{cases}n & \text { if } n \leq 1 \\ \text { fib(n-I) }+f i b(n-2) & \text { if } n>1\end{cases}$

Fibonacci sequence:

$$
0, I, I, 2,3,5,8, I 3,2 \mid, 34,55,89, I 44, \ldots
$$

- NOT so easy to define iteratively...

Recursion vs Iteration

- fib $(n)= \begin{cases}n & \text { if } n \leq 1 \\ \text { fib(} n-I)+f i b(n-2) & \text { if } n>1\end{cases}$

```
fib(n)
if n < 2 { return n }
else { return fib(n-1)+fib(n-2) }
```

```
fib(n)
a}\leftarrow
b}\leftarrow
for i = 1 to n {
    b}\leftarrowa+
        a}\leftarrow\textrm{b}-\textrm{a
}
return a
```


Weak Binet Formula

Statements. For all $\mathrm{n} \geq \mathrm{I}$, $\mathrm{fib}(\mathrm{n}) \leq \varphi^{\mathrm{n}}$ is true.
whenever $0 \leq \varphi^{2}-\varphi$-I and $\varphi \geq 1$.
For all $n \geq I, f i b(n) \geq \varphi^{n-2}$ is true.
whenever $0 \geq \varphi^{2}-\varphi$-I and $\varphi \geq I$.
Therefore:
For all $\mathrm{n} \geq \mathrm{I}, \varphi^{\mathrm{n}} / \varphi^{2} \leq \mathrm{fib}(\mathrm{n}) \leq \varphi^{\mathrm{n}}$ is true.
whenever $0=\varphi^{2}-\varphi$ - I and $\varphi \geq$ I.
Only solution $\varphi=$ golden ration $=(1+\sqrt{ } 5) / 2$.
$\mathrm{fib}(\mathrm{n})$ is $\boldsymbol{\theta}\left(\varphi^{\mathrm{n}}\right)$.

Merge Sort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

\mathbf{A}	\mathbf{L}	\mathbf{G}	\mathbf{O}	\mathbf{R}	\mathbf{I}	\mathbf{T}	\mathbf{H}	\mathbf{M}	\mathbf{S}

A	L	G	O	R

A	G	L	O	R

A	G	H	I	L	M	O	R	S	T

merge $O(n)$

Merge

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.


```
A G H I
```

Challenge for the bored. In-place merge. [Kronrod, 1969]

Goal: move the n discs from stack \#3 to stack \#2 while

- allowing only one disc removed at any time
- allowing only a smaller disc to rest on top of a larger one.

Hanoi(n,S3,S2,SI) // n \geq I

if $n>$ I then Hanoi(n-I,S3,SI,S2) move disc n from $S 3$ to $S 2$ if $n>$ Ithen Hanoi(n-I,SI,S2,S3)

Recurrence Relation

Def. $T(n)=$ number of moves to Hanoi of n.

Hanoi recurrence.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \mathrm{~T}(n-1)+1 & \text { if } n>1\end{cases}
$$

Solution. $T(n)$ is $O\left(2^{n}\right)$.

Assorted proofs. We describe several ways to prove this recurrence.

Telescoping Proof

Claim. If (n) satisfies this recurrence, then $T(n)=2^{n}-I$.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \mathrm{~T}(n-1)+1 & \text { if } n>1\end{cases}
$$

Pf. For $\mathrm{n}>\mathrm{I}: \quad \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n}-\mathrm{I})+\mathrm{I}$

$$
\begin{aligned}
& =2(2 T(n-2)+1)+1 \\
& =4 T(n-2)+2+1 \\
& =4(2 T(n-3)+1)+2+1 \\
& =8 T(n-3)+4+2+1 \\
& \cdots \\
& =2^{k} T(n-k)+2^{k-1}+\ldots+2+1 \\
& \ldots \\
& =2^{n-1} T(1)+2^{n-2}+\ldots+2+1 \\
& =2^{n}-1
\end{aligned}
$$

Induction Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=2^{n}-I$.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \mathrm{~T}(n-1)+1 & \text { if } n>1\end{cases}
$$

Pf. (by induction on n)

- Base case: $\mathrm{n}=1=2^{\prime}$ - 1 .
- Inductive hypothesis: for $n \geq I, T(n)=2^{n}$ - I.
- Goal: show that $T(n+1)=2^{n+1}-I$.

$$
\begin{aligned}
\mathrm{T}(n+1) & =2 \mathrm{~T}(n)+1 \quad \text { by definition } \\
& =2\left(2^{n}-1\right)+1 \quad \text { by I.H. } \\
& =2^{n+1}-2+1 \\
& =2^{n+1}-1 .
\end{aligned}
$$

Recurrence Relation

Def. $\mathrm{T}(\mathrm{n})$ = number of comparisons to mergesort an input of size n .

Mergesort recurrence.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T([n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Solution. $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=$.

Telescoping Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(\underset{1}{n})=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. For $\mathrm{n}>\mathrm{I}$:

$$
\begin{array}{rll}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n}+1 \\
& =\frac{T(n / 2)}{n / 2}+1 \\
& =\frac{T(n / 4)}{n / 4}+1+1 \\
& \cdots \\
& =\frac{T(n / n)}{n / n}+\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

Induction Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on k such that $n=2^{k}$)

- Base case: $\mathrm{n}=2^{0}=1$.
- Inductive hypothesis: $T(n)=T\left(2^{k}\right)=n \log _{2} n$.
- Goal: show that $T(2 n)=T\left(2^{k+1}\right)=2 n \log _{2}(2 n)$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Generalized Induction Proof

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $\mathrm{n}=\mathrm{I} . \mathrm{T}(\mathrm{I})=0=\mathrm{I}\lceil|\mathrm{I}|\rceil$.
- Define $\mathrm{n}_{\mathrm{I}}=\lfloor\mathrm{n} / 2\rfloor, \mathrm{n}_{2}=\lceil\mathrm{n} / 2\rceil$. (note $\mathrm{I} \leq \mathrm{n}_{1}<\mathrm{n}, \mathrm{I} \leq \mathrm{n}_{2}<\mathrm{n}$)
- Induction step: Let $n \geq 2$, assume true for $I, 2, \ldots, n-I$.

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\lg n_{1}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\lg n_{2}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& =n\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n(\lceil\lg n\rceil-1)+n \\
& =n\lceil\lg n\rceil
\end{aligned}
$$

$$
\begin{aligned}
n_{2} & =\lceil n / 2\rceil \\
& \leq\left\lceil 2^{\lceil\lg n\rceil} / 2\right\rceil \\
& =2^{\lceil\lg n\rceil} / 2 \\
\Rightarrow & \lg n_{2} \leq\lceil\lg n\rceil-1
\end{aligned}
$$

Master Theorem

Used for many divide-and-conquer recurrences
$T(n)=a T(n / b)+f(n)$,
where $a \geq 1, b>1$, and $f(n)>0$.
$a=$ (constant) number of sub-instances, $b=$ (constant) size ration of sub-instances, $f(\mathrm{n})=$ time used for dividing and recombining.

Based on the master theorem (Theorem 4.1).
Compare $n^{\log _{b} a}$ vs. $f(n)$:
$T(n)=a T(n / b)+f(n)$
Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$ and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n. Solution: $T(n)$ is $\Theta(f(n))$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2
but $n^{3} / \log n$ is not $\Theta\left(n^{3} \log { }^{k} n\right)$ for $\mathrm{k} \geq 0$
Cannot use Master Method.

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Straightforward: n^{2}.
- Divide-and-conquer: $\mathrm{n} \log \mathrm{n}$.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Binary Search

Find a value v in a sorted array of elements.

$\left[a_{0} \leq a_{1} \leq, \ldots, a_{\text {Size-1 }}\right]$

Size $=$ number of elements.

Binary Search

Algorithm: binarySearch(a, v, low, high $)$

Input: array a, value v, lower and upper bound indices low, high (low $=0$, high $=n-1$ initially $)$ Output: the index i of element v (if it is present), -1 (if v is not present)

```
if low == high then
    if }a[low]==v then
        return low
    else
        return -1
    end if
else
    mid}\leftarrow(low+high)/
    if v\leqa[mid] then
        return binarySearch(a,v,low,mid )
    else
        return binarySearch(a,v,mid + 1, high)
    end if
end if
```


Recurrence Relation

Def. $T(n)=$ number of comparisons to find v among n sorted elements.

Binary Search recurrence.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ \mathrm{~T}(n / 2)+1 & \text { if } n>1\end{cases}
$$

Solution. $T(n)$ is $O(\log n)$ (Master Theorem Case 2).

D\&C Multiplication

To multiply two n -digit integers:

- Multiply four $\mathrm{n} / 2$-digit integers.
- Add two $n / 2$-digit integers, and shift to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right)=2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n) \text { is } \Theta\left(n^{2}\right)
$$

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two n/2 digit integers.
- Multiply three $\mathrm{n} / 2$-digit integers.
- Add, subtract, and shift $\mathrm{n} / 2$-digit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)+x_{0} y_{0} \\
& \mathrm{~A} \quad \mathrm{~B}
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \Rightarrow \mathrm{T}(n) \text { is } O\left(n^{\log _{2} 3}\right) \text { is } O\left(n^{1.585}\right)
\end{aligned}
$$

Karatsuba Multiplication

Generalization: $O\left(n^{1+\varepsilon}\right)$ for any $\varepsilon>0$.

Best known: $n \log n 2^{\circ}\left(\log ^{*} n\right)$

where $\log ^{*}(x)= \begin{cases}0 & \text { if } x \leq 1 \\ 1+\log ^{*}(\log x) & \text { if } x>1\end{cases}$
Conjecture: $\Omega(\mathrm{n} \log \mathrm{n})$ but not proven yet.

Public-Key Cryptography

8Rdewrill qlkle(\$es|T9@

Encryption

WVIl you menry n

Decryption $\sqrt{3}$ 31T9@

Fast Modular

Exponentiation

- Input: base x,modulus N and exponent e.
- Output: $x^{e} \% N$.
$y=1$
WHILE e>0 DO
IF e\%2 = I THEN $y=x y \% N$
$\mathrm{e}=\mathrm{e} / 2 ; \mathrm{x}=\mathrm{x}^{2} \% \mathrm{~N}$
return y
- running time is $O\left(|\mathrm{e}|^{*}|x|^{2}\right)=\mathrm{O}\left(|x|^{3}\right)$

Euclidian Algorithm

- Input: integers a,b.
- Output: g, x, y such that $g=\mathrm{GCD}(a, b)$.
$g=a ; g^{\prime}=b ;$
WHILE $g^{\prime}>0$ DO
$k=g / g^{\prime}$
$g^{\prime \prime}=g-k g^{\prime} ; \quad$ I/ g" $=g \% g^{\prime}$
$g=g^{\prime} ;$
$g^{\prime}=g^{\prime \prime} ;$
return g
- running time is $O\left(|a|^{*}|b|\right)$

Primality Testing

- Input: base a, modulus N .
- Output: Is N a base-a pseudo-prime? .

IF GCD $(a, N)>$ I THEN return False set $s \geq 0$ and t (odd) s.t. N - $I=t 2^{s}$
$x=a^{2} \% \mathrm{~N} ; y=\mathrm{N}$ - I
FOR $i=1$ TO s IF $x=I$ AND $y=$ N-I THEN return True $y=x ; x=x^{2} \% N$
return False

- running time is $O\left(|N|^{4}\right)$

RSA Encryption

- Gen: on input I^{n} run GenRSA(I^{n}) and obtain ($\left.\mathrm{N}, \mathrm{e}, \mathrm{d}\right)$. Let $\langle N, e\rangle$ be the public-key and $\langle d\rangle$ the private key.
- Enc: on input $\langle\mathrm{N}, \mathrm{e}\rangle$ and a message $0<m<\mathrm{N}$ compute

$$
c=m^{e} \bmod N
$$

- Dec: on input $\langle d\rangle$ and a ciphertext $0<c<N$ compute

$$
m=c^{d} \bmod N
$$

Quantum Factoring

Dustin Moody
Post Quantum Cryptography Team

24. Feb 2016

Timeline

- Fall 2016 - formal Call For Proposals
- Nov 2017 - Deadline for submissions
- 3-5 years - Analysis phase
- NIST will report its findings
- 2 years later - Draft standards ready
- Workshops
- Early 2018 - submitter's presentations
- One or two during the analysis phase

Alice and Bob's Adventures in GEOM-land...

Some Geometric Problems

Segment intersection: Given two segments, do they intersect?

Some Geometric Problems

Simple closed path: Given a set of points, find a nonintersecting polygon with vertices on the points.

Some Geometric Problems

Inclusion in polygon: Is a point inside or outside a polygon?

How to Compute the Orientation

- slope of segment $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right): \sigma=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
- slope of segment $\left(\mathrm{p}_{2}, \mathrm{p}_{3}\right): \tau=\left(y_{3}-y_{2}\right) /\left(x_{3}-x_{2}\right)$

- given a polygon and a point, is the point inside or outside the polygon?
- orientation helps solving this problem in linear time

Simple Closed Path - Part I

- Problem: Given a set of points ...
- "Connect the dots" without crossings

Package Wrap

- given the current point, how do we compute the next point?
- set up an orientation tournament using the current point as the anchor-point...
- the next point is selected as the point that beats all other points at CCW orientation, i.e., for any other point, we have

$$
\operatorname{orientation}(\mathrm{c}, \mathrm{p}, \mathrm{q})=\mathrm{CCW}
$$

Time Complexity of Package Wrap

- For every point on the hull we examine all the other points to determine the next point
- Notation:
- N : number of points
- M : number of hull points $(M \leq N)$
- Time complexity:
- $\Theta(M N)$
- Worst case: $\Theta\left(N^{\mathbf{2}}\right)$
- all the points are on the hull $(M=N)$
- Average case: $\Theta(N \log N)-\Theta\left(N^{4 / 3}\right)$
- for points randomly distributed inside a square, $M=\Theta(\log N)$ on average
- for points randomly distributed inside a circle, $M=\Theta\left(N^{1 / 3}\right)$ on average

Graham Scan

- Form a simple polygon (connect the dots as before)

- Remove points at concave angles

($\mathrm{p}, \mathrm{c}, \mathrm{n}$) is a right turn!

($\mathrm{p}, \mathrm{c}, \mathrm{n}$) is a right turn!

Time Complexity of Graham Scan

- Phase 1 takes time $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- points are sorted by angle around the anchor
- Phase 2 takes time $\mathrm{O}(\mathrm{N})$
- each point is inserted into the sequence exactly once, and
- each point is removed from the sequence at most once
- Total time complexity $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

GRAPHS

- Definitions
- Examples
- The Graph ADT

What is a Graph?

- A graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is composed of:
\mathbf{V} : set of vertices
\mathbf{E} : set of edges connecting the vertices in \mathbf{V}
- An edge $\mathbf{e}=(\mathrm{u}, \mathrm{v})$ is a pair of vertices
- Example:

Graph Terminology

- adjacent vertices: connected by an edge
- degree (of a vertex): \# of adjacent vertices
 $\Sigma \operatorname{deg}(\mathrm{v})=2$ (\# edges)
$v \in V$
- Since adjacent vertices each count the adjoining edge, it will be counted twice
- A spanning tree of \mathbf{G} is a subgraph which
- is a tree
- contains all vertices of \mathbf{G}

G

spanning tree of \mathbf{G}

- Failure on any edge disconnects system (least fault tolerant)
- Edge list
- Adjacency lists
- Adjacency matrix

the edges into unsorted sequences.
- Easy to implement.
- Finding the edges incident on a given vertex is inefficient since it requires examining the entire edge sequence

- represent the graph by the adjacency lists of all the vertices

- Space $=\Theta\left(\mathbf{N}+\sum_{\operatorname{deg}(\mathbf{v}))}=\Theta(\mathbf{N}+\mathbf{M})\right.$

	a	b	c	d	e
	F	T	T	T	F
b	T	F	F	F	T
c	T	F	F	T	T
d	T	F	T	F	T
e	F	T	T	T	F

- matrix M with entries for all pairs of vertices
- $\mathrm{M}[\mathrm{i}, \mathrm{j}]=$ true means that there is an edge (i, j) in the graph.
- $M[i, j]=$ false means that there is no edge (i, j) in the graph.
- There is an entry for every possible edge, therefore: Space $=\Theta\left(\mathbf{N}^{2}\right)$

-Unix or DOS/Windows file system

- \boldsymbol{A} is the root node.
- B is the parent of D and E .
- C is the sibling of B
- \boldsymbol{D} and \boldsymbol{E} are the children of B
- D, E, F, G, I are external nodes, or leaves
- A, B, C, H are internal nodes
-The depth (level) of E is 2
-The height of the tree is 3
-The degree of node \boldsymbol{B} is 2

- Ordered tree: the children of each node are ordered.
- Binary tree: ordered tree with all internal nodes of degree 2.
-Recursive definition of binary tree:
- A binary tree is either
- a n external node (leaf), or
- a n internal node (the root) and two binary trees (left subtree and right subtree)

Examples of Binary Trees

-arithmetic expression

- $(\#$ external nodes $)=(\#$ internal nodes $)+1$
- (\# nodes at level $i) \leq 2^{i}$
- (\# external nodes) $\leq 2^{\text {(height) }}$
- (height) $\geq \log _{2}$ (\# external nodes)
- (height) $\geq \log _{2}$ (\# nodes) -1
- $($ height $) \leq(\#$ internal nodes $)=((\#$ nodes $)-1) / 2$

Level

Linked Data Structure for Binary Trees

Representing General Trees

\bullet-tree T

Representing General Trees

-binary tree T^{\prime} representing T

DEPTH-FIRST SEARCH

- Graph Traversals
- Depth-First Search

Depth-First Search

Algorithm DFS(v);
Input: A vertex v in a graph
Output: A labeling of the edges as "discovery" edges and "backedges"
for each edge e incident on v do
if edge e is unexplored then let w be the other endpoint of e if vertex w is unexplored then label e as a discovery edge recursively call $\mathbf{D F S}(w)$ else
label e as a backedge

DFS Properties

- Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s has been preformed. Then:

1) The traversal visits all vertices in the connected component of s
2) The discovery edges form a spanning tree of the connected component of s

- Justification of 1):
- Let's use a contradiction argument: suppose there is at least on vertex v not visited and let w be the first unvisited vertex on some path from s to v.
- Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
- But when we visited u we must have looked at edge (u, w). Therefore w must have been visited.
- and justification

DFS Properties

- Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s has been preformed. Then:

1) The traversal visits all vertices in the connected component of s
2) The discovery edges form a spanning tree of the connected component of s

- Justification of 2):
- We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery edges, i.e. discovery edges form a tree.
- This is a spanning tree because DFS visits each vertex in the connected component of s

Running Time Analysis

- Remember:
- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from each of its vertices
- For n_{s} vertices and m_{s} edges in the connected component of the vertex s, a DFS starting at s runs in $\mathrm{O}\left(n_{s}+m_{s}\right)$ time if:
- The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
- Marking a vertex as explored and testing to see if a vertex has been explored takes O(degree)
- By marking visited nodes, we can systematically consider the edges incident on the current vertex so we do not examine the same edge more than once.

Breadth-First Search

Breadth-First Search

-Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so definesaspanningtreewithseveralusefulproperties
-The starting vertex s has level 0 , and, as in DFS, defines that point as an "anchor."
-In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
-These edges are placed into level 1
-In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
-This continues until every vertex has been assigned a level.
-The label of any vertex v corresponds to the length of the shortest path from s to v.

BFSPseudo-Code

Algorithm BFS(s):
Input: A vertex s in a graph
Output:Alabelingoftheedgesas"discovery"edges and "cross edges"
initialize container L_{0} to contain vertex s
$i \leftarrow 0$
while L_{i} is not empty do
create container L_{i+1} to initially be empty for each vertex v in L_{i} do for eachedge e incident on v do
if edge e is unexplored then
let w be the other endpoint of e if vertex w is unexplored then label e as a discovery edge insert w into $\mathrm{L}_{\mathrm{i}+1}$
else
label e as a cross edge
$i \leftarrow i+1$

Properties of BFS

- Proposition:Let G be an undirected graph on which a BFS traversal starting at vertex s has been performed. Then
-The traversal visits all vertices in the connected component of s.
-The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected component of s
-For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
- I $\mathrm{f}(u, v)$ is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.

Properties of BFS

- Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $\mathrm{O}(n+m)$. Also, there exist $\mathrm{O}(n+m)$ time algorithms based on BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum number of edges of any path between s and v.

SEARCHING

- the dictionary ADT
- binary search trees

The Dictionary ADT

- a dictionary is an abstract model of a database
- like a priority queue, a dictionary stores key-element pairs
- the main operation supported by a dictionary is searching by key
- simple container methods:
- size()
- isEmpty()
- elements()

The Dictionary ADT

- query methods:
- findElement (k)
- findAllElements(k)
- update methods:
- insertltem (k, e)
- removeElement(k)
- removeAllElements(k)
- special element
- NO_SUCH_KEY, returned by an unsuccessful search
- each internal node stores an item (k, e) of a dictionary.
- keys stored at nodes in the left subtree of v are less than or equal to k.
- keys stored at nodes in the right subtree of v are greater than or equal to k.
- external nodes do not hold elements but serve as

- A binary search tree T is a decision tree, where the question asked at an internal node v is whether the search key k is less than, equal to, or greater than the key stored at v.

Algorithm TreeSearch(k, v):

Input: A search key k and a node v of a binary search tree T.
Ouput: A node w of the subtree $T(v)$ of T rooted at v, if v is an external node then return v
if $k=\operatorname{key}(v)$ then return v
else if $k<\operatorname{key}(v)$ then
return TreeSearch(k, T.leftChild(v))
else
$\{k>\operatorname{key}(v)\}$
return TreeSearch $(k$, T.rightChild(v))

Insertion

- To perform insertltem (k, e), let w be the node returned by TreeSearch(k, T.root())
- If w is external, we know that k is not stored in T. We call expandExternal (w) on T and store (k, e) in w

Removal I

- We locate the node w where the key is stored with algorithm TreeSearch
- If w has an external child z, we remove w and z with removeAboveExternal (z)

- A search, insertion, or removal, visits the nodes along a root-to leaf path, plus possibly the siblings of such nodes
- Time $O(1)$ is spent at each node
- The running time of each operation is $\mathrm{O}(h)$, where h is the height of the tree
- The height of binary serch tree is in n in the worst case, where a binary search tree looks like a sorted sequence

- To achive good running time, we need to keep the tree balanced, i.e., with $\mathrm{O}(\log n)$ height

Heaps I

- Heaps
- Properties
- Insertion and Deletion

Heaps

- A heap is a binary tree T that stores a collection of keys (or key-element pairs) at its internal nodes and that satisfies two additional properties:
- Order Property: key(parent) \leq key(child)
- Structural Property: all levels are full, except the last one, which is left-filled (complete binary tree)

Height of a Heap

A heap T storing n keys has height $h=\lceil\log (n+1)\rceil$, which is $\mathrm{O}(\log n)$

$$
\text { - } n \geq 1+2+4+\ldots+2^{h-2}+1=2^{h-1}-1+1=2^{h-1}
$$

Height of a Heap

- $n \leq 1+2+4+\ldots+2^{h-1}=2^{h}-1$
0
1
$h-2$
$h-1$
h

- Therefore $2^{h-1} \leq n \leq 2^{h}-1$
- Taking logs, we get $\log (n+1) \leq h \leq \log n+1$
- Which implies $\boldsymbol{h}=\lceil\boldsymbol{\operatorname { l o g }}(\boldsymbol{n}+\mathbf{1})\rceil$

Heap insertion

So here we go ...
The key to insert is 6

Upheap

- Swap parent-child keys out of order

Removal From a Heap RemoveMin()

Downheap

- Implementation
- HeapSort
- Bottom-Up Heap Construction
- Locators

Implementation of a Heap

Vector Based Implementation

- Updates in the underlying tree occur only at the "last element"
- A heap can be represented by a vector, where the node at rank i has
- left child at rank $2 i$ and
- right child at rank $2 i+1$

Heap Sort

- All heap methods run in logarithmic time or better
- If we implement PriorityQueueSort using a heap for our priority queue, insertlem and removeMin each take $\mathrm{O}(\log k), k$ being the number of elements in the heap at a given time.
- We always have at most n elements in the heap, so the worst case time complexity of these methods is $\mathrm{O}(\log n)$.
- Thus each phase takes $\mathrm{O}(n \log n)$ time, so the algorithm runs in $\mathrm{O}(n \log n)$ time also.
- This sort is known as heap-sort.
- The $\mathrm{O}(n \log n)$ run time of heap-sort is much better than the $\mathrm{O}\left(n^{2}\right)$ run time of selection and insertion sort.

In-Place Heap-Sort

- Do not use an external heap
- Embed the heap into the sequence, using the vector representation

Bottom-Up Heap Construction

- build $(n+1) / 2$ trivial one-element heaps

rigure 8.1 ine decision tree ior insertion sort operating on three elements. An internal node annotated by $i: j$ indicates a comparison between a_{i} and a_{j}. A leaf annotated by the permutation $\langle\pi(1), \pi(2), \ldots, \pi(n)\rangle$ indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$. The shaded path indicates the decisions made when sorting the input sequence $\left\langle a_{1}=6, a_{2}=8, a_{3}=5\right\rangle$; the permutation $\langle 3,1,2\rangle$ at the leaf indicates that the sorted ordering is $a_{3}=5 \leq a_{1}=6 \leq a_{2}=8$. There are $3!=6$ possible permutations of the input elements, so the decision tree must have at least 6 leaves.

ALGORITHMS
 RONALDL. RIVEST

Counting-Sort (A, B, k)

```
1 for }i\leftarrow0\mathrm{ to }
    do C[i] \leftarrow0
    3 for }j\leftarrow1\mathrm{ to length[A]
    do C[A[j]]}\leftarrowC[A[j]]+
    5 }\trianglerightC[i]\mathrm{ now contains the number of elements equal to }i\mathrm{ .
    6 for }i\leftarrow1\mathrm{ to }
        do C[i]}\leftarrowC[i]+C[i-1
    8 }\trianglerightC[i]\mathrm{ now contains the number of elements less than or equal to i.
9}\mathrm{ for }j\leftarrow\mathrm{ length [A] downto 1
10 do B[C[A[j]]]}\leftarrowA[j
11 C[A[j]]}\leftarrowC[A[j]]-1
```


Radix sort

How IBM made its money. Punch card readers for census tabulation in early 1900's. Card sorters, worked on one column at a time. It's the algorithm for using the machine that extends the technique to multi-column sorting. The human operator was part of the algorithm!
Key idea: Sort least significant digits first.

329	720	720	329
457	355	329	355
657	436	436	436
839	457	$\ldots!n \cdot$	839
436	657	355	657
720	329	457	720
355	839	657	839

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The remaining columns show the list after successive sorts on increasingly significant digit positions. Shading indicates the digit position sorted on to produce each list from the previous one.

RADIX-SORT (A, d)
$1 \quad$ for $i \leftarrow 1$ to d
2
do use a stable sort to sort array A on digit i

Correctness:

- Induction on number of passes (i in pseudocode).
- Assume digits $1,2, \ldots, i-1$ are sorted.
- Show that a stable sort on digit i leaves digits $1, \ldots, i$ sorted:
- If 2 digits in position i are different, ordering by position i is correct, and positions $1, \ldots, i-1$ are irrelevant.
- If 2 digits in position i are equal, numbers are already in the right order (by inductive hypothesis). The stable sort on digit i leaves them in the right order.

This argument shows why it's so important to use a stable sort for intermediate sort.

Radix-Sort (A, d)

1 for $i \leftarrow 1$ to d
2
do use a stable sort to sort array A on digit i

Analysis: Assume that we use counting sort as the intermediate sort.

- $\Theta(n+k)$ per pass (digits in range $0, \ldots, k)$
- d passes
- $\Theta(d(n+k))$ total
- If $k=O(n)$, time $=\Theta(d n)$.

QuickSort

- Yet another sorting algorithm!
- Usually faster than other algorithms on average, although worst-case is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Divide-and-conquer:
- Divide: Choose an element of the array for pivot. Divide the elements into three groups: those smaller than the pivot, those equal, and those larger.
- Conquer: Recursively sort each group.
- Combine: Concatenate the three sorted groups.

QuickSort running time

- Worse case:
- Already sorted array (either increasing or decreasing)
$-T(n)=T(n-1)+c n+d$
$-T(n)$ is $O\left(n^{2}\right)$
- Average case: If the array is in random order, the pivot splits the array in roughly equal parts, so the average running time is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Advantage over mergeSort:
- constant hidden in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ are smaller for quickSort. Thus it is faster by a constant factor
- QuickSort is easy to do "in-place"

In-place algorithms

- An algorithm is in-place if it uses only a constant amount of memory in addition of that used to store the input
- Importance of in-place sorting algorithms:
- If the data set to sort barely fits into memory, we don't want an algorithm that uses twice that amount to sort the numbers
- SelectionSort and InsertionSort are in-place: all we are doing is moving elements around the array
- MergeSort is not in-place, because of the merge procedure, which requires a temporary array
- QuickSort can easily be made in-place...

Partition

Algorithm partition(A, start, stop)
Input: An array A, indices start and stop.
Output: Returns an index j and rearranges the elements of A
such that for all $i<j, A[i] \leq A[j]$ and
for all $k>j, A[k] \geq A[j]$.
pivot \leftarrow A[stop]
left \leftarrow start
right \leftarrow stop - 1
while left \leq right do
while left \leq right and A[left] \leq pivot) do left \leftarrow left +1
while (left \leq right and A[right] \geq pivot) do right \leftarrow right -1
if (left < right) then exchange A[left] \leftrightarrow A[right]
exchange $A[$ stop $] \leftrightarrow A[l e f t]$
return left

In-place quickSort

Algorithm quickSort(A, start, stop)
Input: An array A to sort, indices start and stop
Output: A[start...stop] is sorted
if (start < stop) then pivot \leftarrow partition(A, start, stop) quickSort(A, start, pivot-1) quickSort(A, pivot+1, stop)

```
RandomizedQuicksort(A,start,stop) {
    if |A| = 0 return
    choose a pivot A[i] uniformly at random (start }\leq\textrm{i}\leq\mathrm{ stop)
    exchange A[i] ↔A[stop]
    pivot }\leftarrow\mathrm{ partition(A,start,stop)
    RandomizedQuicksort(A, start, pivot-I)
    RandomizedQuicksort(A, pivot+I, stop)
}
```


Quicksort

Running time.

- [Best case.] Select the median element as the pivot: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest (or largest) element as the pivot: quicksort makes $\Theta\left(n^{2}\right)$ comparisons.

Randomize. Protect against worst case by choosing pivot at random.

Intuition. If we always select a pivot that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_{1}<x_{2}<\ldots<x_{n}$.

Randomized Quicksort: Expected Number of Comparisons
Theorem. Expected \# of comparisons is $O(n \log n)$.

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65 \mathrm{n}$.

Ex. If $\mathrm{n}=\mathrm{I}$ million, the probability that randomized quicksort takes less than $4 \mathrm{n} \ln \mathrm{n}$ comparisons is at least 99.94%.

Chebyshev's inequality. $\operatorname{Pr}[|X-\mu| \geq k \delta]<1 / k^{2}$.

Strings and Pattern Matching

- Brute Force,Rabin-Karp, Knuth-Morris-Pratt
- Regular Expressions

String Searching

- The object of string searching is to find the location of a specific text pattern within a larger body of text (e.g., a sentence, a paragraph, a book, etc.).
- As with most algorithms, the main considerations for string searching are speed and efficiency.
- There are a number of string searching algorithms in existence today, but the three we shall review are Brute Force,Rabin-Karp, and Knuth-Morris-Pratt.

Rabin-Karp

- The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for each M-character subsequence of text to be compared.
- If the hash values are unequal, the algorithm will calculate the hash value for next M-character sequence.
- If the hash values are equal, the algorithm will do a Brute Force comparison between the pattern and the M-character sequence.
- In this way, there is only one comparison per text subsequence, and Brute Force is only needed when hash values match.
- Perhaps an example will clarify some things...

Rabin-Karp Algorithm

pattern is M characters long
hash_p=hash value of pattern
hash_t=hash value of first M letters in body of text
do if (hash_p $==$ hash_t)
brute force comparison of pattern and selected section of text hash_t = hash value of next section of text, one character over
until (end of text or brute force comparison $==$ true)

Rabin-Karp Complexity

- If a sufficiently large prime number is used for the hash function, the hashed values of two different patterns will usually be distinct.
- If this is the case, searching takes $\mathrm{O}(\mathrm{N})$ time, where N is the number of characters in the larger body of text.
- It is always possible to construct a scenario with a worst case complexity of O(MN). This, however, is likely to happen only if the prime number used for hashing is small.

Comment about input size...

2)

Write any algorithm that runs in time $\Theta\left(n^{2} \log ^{2} n\right)$ in worse case. Explain why this is its running time. I don't care what it does. I only care about its running time...

WhatEver(int m)

```
FOR i=1 TO m
    FOR j=1 TO m
    x=m; WHILE x>1 DO { x=x/2; y=m;
                                WHILE y>1 DO y=y/2 }
```

$\mathrm{n}=|\mathrm{m}| \sim \log \mathrm{m}$. Therefore running time is $\Theta\left(m^{2} \log ^{2} m\right)=\Theta\left(2^{2 n} n^{2}\right)$

Comment about input size...

2)

Write any algorithm that runs in time $\Theta\left(n^{2} \log ^{2} n\right)$ in worse case. Explain why this is its running time. I don't care what it does. I only care about its running time...

WhatEver(int[] A)
$\mathrm{n}=$ A.length;
FOR $\mathrm{i}=1$ TO n
FOR $\mathrm{j}=1$ TO n
$x=n$; WHILE $x>1$ DO $\{x=x / 2$; $y=n$;
WHILE $y>1$ DO $y=y / 2\}$

Strings and Pattern Matching

- Brute Force,Rabin-Karp, Knuth-Morris-Pratt
- Regular Expressions

The Knuth-Morris-Pratt Algorithm

- The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by keeping track of information gained from previous comparisons.
- A failure function (f) is computed that indicates how much of the last comparison can be reused if it fails.
- Specifically, f is defined to be the longest prefix of the pattern $\mathrm{P}[0, . ., \mathrm{j}]$ that is also a suffix of $\mathrm{P}[1, . ., \mathrm{j}]$
- Note: not a suffix of P[0,..,j]

The KMP Algorithm (contd.)

- the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T, P)
Input: Strings T (text) with n characters and P (pattern) with m characters.
Output: Starting index of the first substring of T matching P, or an indication that P is not a substring of T.
$f \leftarrow$ KMPFailureFunction (P) \{build failure function\}
$i \leftarrow 0$
$j \leftarrow 0$
while $i<n$ do
if $P[j]=T[i]$ then
if $j=m-1$ then
return $i-m-1$ \{a match\}
$i \leftarrow i+1$
$j \leftarrow j+1$
else if $j>0$ then $\{$ no match, but we have advanced\}
$j \leftarrow f(j-1)\{\mathrm{j}$ indexes just after matching prefix in P$\}$
else

$$
i \leftarrow i+1
$$

return "There is no substring of T matching P "

The KMP Algorithm (contd.)

-The KMP failure function: Pseudo-Code

```
Algorithm KMPFailureFunction(P);
    Input: String P (pattern) with m characters
    Ouput: The faliure function }f\mathrm{ for }P\mathrm{ , which maps j to
        the length of the longest prefix of P that is a suffix
        of P[1,..,j]
    i\leftarrow1
    j\leftarrow0
    while}i\leqm-1 d
        if P[j] = P[i] then
            {we have matched j+1 characters}
            f(i)\leftarrowj+1
            i\leftarrowi+1
            j\leftarrowj+1
        else if j>0 then
            {j indexes just after a prefix of P that matches}
            j\leftarrowf(j-1)
        else
            {there is no match}
            f(i)\leftarrow0
            i\leftarrowi+1
```


The KMP Algorithm (contd.)

- Time Complexity Analysis
- define $k=i-j$
- In every iteration through the while loop, one of three things happens.
- 1) if $T[i]=P[j]$, then i increases by 1 , as does j k remains the same.
- 2) if $T[i]!=P[j]$ and $j>0$, then i does not change and k increases by at least 1 , since k changes from $i-j$ to $i-f(j-1)$
- 3) if $T[i]!=P[j]$ and $j=0$, then i increases by 1 and k increases by 1 since j remains the same.

The KMP Algorithm (contd.)

- Thus, each time through the loop, either i or k increases by at least 1 , so the greatest possible number of loops is $2 n$
- This of course assumes that f has already been computed.
- However, f is computed in much the same manner as KMPMatch so the time complexity argument is analogous. KMPFailureFunction is $\boldsymbol{O}(m)$
- Total Time Complexity: $\boldsymbol{O}(n+m)$

Regular Expressions

- notation for describing a set of strings, possibly of infinite size
- ε denotes the empty string
- $\mathrm{ab}+\mathbf{c}$ denotes the set $\{\mathrm{ab}, \mathrm{c}\}$
- a* denotes the set $\{\varepsilon, a$, aa, aaa, ... $\}$
- Examples
- (a+b)* all the strings from the alphabet $\{a, b\}$
- $b^{*}\left(a b^{*} a\right)^{*} b^{*}$ strings with an even number of a 's
$-(a+b)^{*} \operatorname{sun}(a+b)^{*}$ strings containing the pattern "sun"
$-(a+b)(a+b)(a+b) a 4-l e t t e r$ strings ending in a

Finite State Automaton

- "machine" for processing strings

Composition of FSA's

Tries

- A trie is a tree-based data structure for storing strings in order to make pattern matching faster.
- Tries can be used to perform prefix queries for information retrieval. Prefix queries search for the longest prefix of a given string X that matches a prefix of some string in the trie.
- A trie supports the following operations on a set S of strings:
insert(X): Insert the string X into S
Input: String Ouput: None
remove(X): Remove string X from S
Input: String Output: None
prefixes(X): Return all the strings in S that have a longest prefix of X
Input: String Output: Enumeration of strings


```
Algorithm prefixQuery \((T, X)\) :
    Input: Trie \(T\) for a set \(S\) of strings and a query string \(X\)
    Output: The node \(v\) of \(T\) such that the labeled nodes of
            the subtree of \(T\) rooted at \(v\) store the strings
            of \(S\) with a longest prefix in common with \(X\)
    \(v \leftarrow T\).root()
    \(i \leftarrow 0 \quad\{i\) is an index into the string \(X\}\)
    repeat
        for each child \(w\) of \(v\) do
        let \(e\) be the edge \((v, w)\)
        \(Y \leftarrow \operatorname{string}(e)\{Y\) is the substring associated with \(e\}\)
        \(l \leftarrow Y\).length ()\(\{l=1\) if \(T\) is a standard trie \(\}\)
    \(\mathrm{Z} \leftarrow X\).substring \((i, i+l-1)\{\mathrm{Z}\) holds the next \(l\) charac
                ters of \(X\) \}
    if \(Z=Y\) then
            \(\nu \leftarrow \mathrm{W}\)
            \(i \leftarrow i+1\) \{move to W , incrementing \(i\) past Z\(\}\)
            break out of the for loop
    else if a proper prefix of Z matched a proper prefix
            of \(Y\) then
            \(\nu \leftarrow \mathrm{W}\)
            break out ot the repeat loop
until \(v\) is external or \(v \neq \mathrm{W}\)
return \(v\)
```


- Constructing the trie:
- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven't seen before, add it to the top level of the trie.
- If you come across a letter you've already seen, scan down the trie until you can't match any more characters, add a node to the trie representing the new string.
- Insert the pair (nodeIndex, lastChar) into the compressed string.
- Reconstructing the string:
- Every time you see a ' 0 ' in the compressed string add the next character in the compressed string directly to the new string.
- For each non-zero nodeIndex, put the substring corresponding to that node into the new string, followed by the next character in the compressed string.
- A graphical example:

Compressed text: $0 \mathbf{h} 0 \mathbf{o} 0 \mathbf{w} 0 _0 \mathbf{n} 2 \mathbf{w} 4 \mathbf{b} 0 \mathbf{r} 6 \mathbf{n} 4 \mathbf{c} 6 _0 \mathbf{i} 5 _0 \mathbf{t} 9$.

- text files are usually stored by representing each character with an 8-bit ASCII code (type man ascii in a Unix shell to see the ASCII encoding)
- the ASCII encoding is an example of fixed-length encoding, where each character is represented with the same number of bits
- in order to reduce the space required to store a text file, we can exploit the fact that some characters are more likely to occur than others
- variable-length encoding uses binary codes of different lengths for different characters; thus, we can assign fewer bits to frequently used characters, and more bits to rarely used characters.
- Example:
- text: java
- encoding: $a=" 0 ", j=" 11 ", v=" 10 "$
- encoded text: 110100 (6 bits)
- How to decode?
- a = "0", j = "01", v = "00"
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

Optimal Compression

- An issue with encoding tries is to insure that the encoded text is as short as possible:

Construction Algorithm

- with a Huffman encoding trie, the encoded text has minimal length

Algorithm Huffman(X):
Input: String X of length n
Output: Encoding trie for X

Compute the frequency $f(c)$ of each character c of X. Initialize a priority queue Q.
for each character c in X do
Create a single-node tree T storing c
Q.insertltem $(f(c), T)$
while $Q . \operatorname{size}()>1$ do
$f_{1} \leftarrow Q$. minKey()
$T_{1} \leftarrow$ Q.removeMinElement()
$f_{2} \leftarrow Q$. minKey ()
$T_{2} \leftarrow Q$.removeMinElement()
Create a new tree T with left subtree T_{1} and right subtree T_{2}.
Q.insertltem $\left(f_{1}+f_{2}\right)$
return tree Q.removeMinElement()

- runing time for a text of length n with k distinct characters: $\mathrm{O}(\mathrm{n}+\mathrm{k} \log \mathrm{k})$

Winter 2016
 COMP-250: Introduction to Computer Science

Lecture 26, April I4, 2016

REVIEW SESSION

