
Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 24, April 7, 2016

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

data

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input: String Ouput: None

remove(X): Remove string X from S
Input: String Output: None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input: String Output: Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabet Σ such

that no string in S is a prefix to another string. A
standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabet Σ
- The path from the root of T to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabet Σ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 to d children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root of T to an internal node v at
depth i corresponds to an i-character prefix of a
string of S.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) where m is the sum of the the
lengths of strings in S to O(n) where n is the number
of strings in S.

≥

 a

by chain of nodes

vi

vi
🚫

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)
18Strings and Pattern Matching

The KMP Algorithm (contd.)
•The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j to
the length of the longest prefix of P that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do
if P[j] = P[i] then
{we have matched j + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{j indexes just after a prefix of P that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

create a
empty string we

create a node z which is external and
 X2 we label u with X.

matched

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie
Algorithm prefixQuery(T, X):

Input: Trie T for a set S of strings and a query string X
Output: The node v of T such that the labeled nodes of

the subtree of T rooted at v store the strings
of S with a longest prefix in common with X

v←T.root()
i←0 {i is an index into the string X}
repeat

for each child w of v do
let e be the edge (v,w)
Y←string(e) {Y is the substring associated with e}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the next l charac

ters of X}
if Z = Y then
v←w
i←i+1{move to W, incrementing i past Z}
break out of the for loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot the repeat loop

until v is external or v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

characters

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r6n4c6_0i5_0t9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bit ASCII code (type man ascii in
a Unix shell to see the ASCII encoding)

• the ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java
- encoding: a = “0”, j = “11”, v = “10”
- encoded text: 110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

37Strings and Pattern Matching

Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies the prefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” does not satisfy the prefix

rule (the code of a is a prefix of the codes of j and v)

• we use an encoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

38Strings and Pattern Matching

Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A B R A C A D A B R A

See? Decodes like magic...

39Strings and Pattern Matching

Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100

40Strings and Pattern Matching

Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C

37Strings and Pattern Matching

Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies the prefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” does not satisfy the prefix

rule (the code of a is a prefix of the codes of j and v)

• we use an encoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

38Strings and Pattern Matching

Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A B R A C A D A B R A

See? Decodes like magic...

39Strings and Pattern Matching

Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100

40Strings and Pattern Matching

Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C

A
010

B
11

R
011

A
010

C
00

A
010

D
10

A
010

B
11

R
011

A
010

37Strings and Pattern Matching

Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies the prefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” does not satisfy the prefix

rule (the code of a is a prefix of the codes of j and v)

• we use an encoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

38Strings and Pattern Matching

Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A B R A C A D A B R A

See? Decodes like magic...

39Strings and Pattern Matching

Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100

40Strings and Pattern Matching

Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C

R
10

O
00

B
0111

E
1100

R
10

T
0110

O
00

K
1110

N
1111

O
00

W
0101

S
0100

C
1101

S
0100

37Strings and Pattern Matching

Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies the prefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” does not satisfy the prefix

rule (the code of a is a prefix of the codes of j and v)

• we use an encoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

38Strings and Pattern Matching

Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A B R A C A D A B R A

See? Decodes like magic...

39Strings and Pattern Matching

Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100

40Strings and Pattern Matching

Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C

41Strings and Pattern Matching

Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

2 2 1 1

24

2 2 1 1

24

5 6

frequency
character

ABRACADABRA

A B R
C D

B R C D
A

A

B R C D

A

42Strings and Pattern Matching

Huffman Encoding Trie (contd.)

B R D

A

0

1

0 1

0

0

11

C

5

11

4 2

6

2 2 1 1

2 2 1 1

24

5 6
A

B R C D

43Strings and Pattern Matching

Final Huffman Encoding Trie

B R D

A

0

1

0 1

0

0

11

C

A B R A C A D A B R A
0 100 101 0 110 0 111 0 100 101 0

23 bits

5

11

4 2

6

2 2 1 1

44Strings and Pattern Matching

Another Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

frequency

character
ABRACADABRA

A B R
C D

A

A

1 1

2

C D

2
R

42
B

45Strings and Pattern Matching

Another Huffman Encoding Trie

5
A

1 1

2

C D

2
R

42
B

1 1

2

C D

2
R

42
B

65
A

46Strings and Pattern Matching

Another Huffman Encoding Trie

11

5
A

1 1

2

C D

2
R

42
B

65
A

1 1

2

C D

2
R

42
B

6

47Strings and Pattern Matching

Another Huffman Encoding Trie

11

1 1

2

C D

2
R

42
B

65
A

0 1

1

1

1

0

0

0

A B R A C A D A B R A
0 10 110 0 1100 0 1111 0 10 110 0

23 bits

48Strings and Pattern Matching

Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input: String X of length n
Output: Encoding trie for X

Compute the frequency f(c) of each character c of X.
Initialize a priority queue Q.

for each character c in X do
Create a single-node tree T storing c
Q.insertItem(f(c), T)

while Q.size() > 1 do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new tree T with left subtree T1 and right

subtree T2.
Q.insertItem(f1 + f2)

return tree Q.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)

45Strings and Pattern Matching

Another Huffman Encoding Trie

5
A

1 1

2

C D

2
R

42
B

1 1

2

C D

2
R

42
B

65
A

46Strings and Pattern Matching

Another Huffman Encoding Trie

11

5
A

1 1

2

C D

2
R

42
B

65
A

1 1

2

C D

2
R

42
B

6

47Strings and Pattern Matching

Another Huffman Encoding Trie

11

1 1

2

C D

2
R

42
B

65
A

0 1

1

1

1

0

0

0

A B R A C A D A B R A
0 10 110 0 1100 0 1111 0 10 110 0

23 bits

48Strings and Pattern Matching

Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input: String X of length n
Output: Encoding trie for X

Compute the frequency f(c) of each character c of X.
Initialize a priority queue Q.

for each character c in X do
Create a single-node tree T storing c
Q.insertItem(f(c), T)

while Q.size() > 1 do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new tree T with left subtree T1 and right

subtree T2.
Q.insertItem(f1 + f2)

return tree Q.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)

48Strings and Pattern Matching

Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input: String X of length n
Output: Encoding trie for X

Compute the frequency f(c) of each character c of X.
Initialize a priority queue Q.

for each character c in X do
Create a single-node tree T storing c
Q.insertItem(f(c), T)

while Q.size() > 1 do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new tree T with left subtree T1 and right

subtree T2.
Q.insertItem(f1 + f2)

return tree Q.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)

49Strings and Pattern Matching

Image Compression
• we can use Huffman encoding also for binary files

(bitmaps, executables, etc.)

• common groups of bits are stored at the leaves

• Example of an encoding suitable for b/w bitmaps

000

0

0

1

11

1

010 101

111

0 1
001 100

0

0 1
011 110

0

0 1

Data Representation/
Lossy Compression

Sound formats

Image formats

Movie formats

Data Representation

sound formats 
 
 
 
 
 
 
 
 

Sound formats

AIFF Sound format

176 samples ≈ 4 ms

(44 100 samples = 1 s)

each sample is a

signed 15 (or 23 or 31) bits value

AIFF Sound format

44 100 samples / second

16 b = 2 B / sample 
(or 24 b = 3 B / sample 
or 32 b = 4 B / sample)

stereo = two channels

2 x 2 x 44 100 = 176,4 kB/s

CD ≈ 700 MB ≈ 75 minutes

AIFF Sound format

why 44 100 samples / second ?

because it is in the correct range...

because 44 100 is divisible by 2,3,4,5,6,7,9,10

MP3 Sound format

Based on Fourrier transform.

576 samples of amplitude / time are
converted to 576 samples of distinct
frequencies. 
 
 
 
 

Bass Treble

In human ears, the cochlea is mechanically performing a process
analog to the Fourrier Transform. The eardrum vibrates back and
forth according to the wave-like representation of the sound. The
frequency information stimulates a specific area in the cochlea.

MP3 Sound format

Frequencies with small coefficients removed 
 

Waveform reconstructed is close to original

Bass Treble

MP3 Sound format

Bass Treble

HIGH quality low

Data Representation

Image formats 
 
 
 
 
 
 
 

TIFF image format

an 8x8 sub-region of a large image: 
 

each individual pixel 
uses 24 bites: 8b for red,  
8b for blue, 8b for green. 

total size = number of pixels x 3 Bytes. 

TIFF image format

Animal eyes focus light on the retina where
an image of the environment is produced.

This image is analysed according to 3 types
of colour sensitive cones, mostly triggered
near the red, green and blue bands.

A perceived colour is a triplet (x,y,z) of
excitations of the 3 types of cones.

Two combinations of colours yielding the
same triplet (x,y,z) are indistinguishable.

JPEG image format

Using a transformation similar to Fourier
transform (used for audio), a so called
Discrete Cosine Transform is applied to each
sub-bloc of size 8x8. 
 
 
 
 
 
 

Notice: colours

are used for abstract

data. Dark means small,

bright means large.

If no data is removed, the resulting image is
nearly identical to the original. Imprecision in
the transform causes small errors. 
 
 
 
 
 
 
 

JPEG image format

If all data very close to zero is removed, 
the resulting image is only slightly different
from the original 
 
 
 
 
 
 
 

JPEG image format

Notice: colours

are used for abstract

data. Dark means small,

bright means large.

If all data close to zero is removed, 
the resulting image is somewhat different
from the original 
 
 
 
 
 
 

JPEG image format

If all data of small magnitude is removed,
the resulting image is still very similar to
the original 
 
 
 
 
 
 
 

JPEG image format

Notice: colours

are used for abstract

data. Dark means small,

bright means large.

If only data of large magnitude is kept, the
resulting image is similar but quite different
from the original. Most details are wiped out. 
 
 
 
 
 
 
 

JPEG image format

Data Representation

movie formats 
 
 
 
 
 
 
 
 

RAW movie format

720×576 pixels per frame

24 bits (colour) per pixel

30 frames per second

30 x 3 x 720 x 576 ≈ 37 MB/s ≈ 135 GB/hour

typically 200 GB per movie !!! (≈ 50 DVDs)

MPEG2 Movie Format

MPEG2 Movie Format

MPEG2 Movie Format

MPEG2 Movie Format

MPEG2 format

Fixed Background images

 saving is about 96%

MPEG2 format

Travelling

MPEG2 format

Each image is encoded with JPEG or similar.

Sound is encoded with MP3 or similar.

Most frames use only small amount of info to
construct from previous frames.

A complete frame is displayed every so often
to make sure the fix part or travelling part
has not substantially changed.

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 24, April 7, 2016

