Winter 2016
 COMP-250: Introduction to Computer Science Lecture 23, April 5, 2016

Comment about input size...

2)

Write any algorithm that runs in time $\Theta\left(n^{2} \log ^{2} n\right)$ in worse case. Explain why this is its running time. I don't care what it does. I only care about its running time...

WhatEver(int m)

```
FOR i=1 TO m
    FOR j=1 TO m
    x=m; WHILE x>1 DO { x=x/2; y=m;
                                WHILE y>1 DO y=y/2 }
```

$\mathrm{n}=|\mathrm{m}| \sim \log \mathrm{m}$. Therefore running time is $\Theta\left(m^{2} \log ^{2} m\right)=\Theta\left(2^{2 n} n^{2}\right)$

Comment about input size...

2)

Write any algorithm that runs in time $\Theta\left(n^{2} \log ^{2} n\right)$ in worse case. Explain why this is its running time. I don't care what it does. I only care about its running time...

WhatEver(int[] A)
$\mathrm{n}=$ A.length;
FOR $\mathrm{i}=1$ TO n
FOR $\mathrm{j}=1$ TO n
$x=n$; WHILE $x>1$ DO $\{x=x / 2$; $y=n$;
WHILE $y>1$ DO $y=y / 2\}$

Mercury Course Evaluations

Course evaluations matter. Evaluate your courses and instructors!

Default period:

March 21 - May 1
Condensed period:
March 21 - April 17
Click HERE to
complete your course evaluations.

Strings and Pattern Matching

- Brute Force,Rabin-Karp, Knuth-Morris-Pratt
- Regular Expressions

The Knuth-Morris-Pratt Algorithm

- The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by keeping track of information gained from previous comparisons.
- A failure function (f) is computed that indicates how much of the last comparison can be reused if it fails.
- Specifically, f is defined to be the longest prefix of the pattern $\mathrm{P}[0, . ., \mathrm{j}]$ that is also a suffix of $\mathrm{P}[1, \ldots, \mathrm{j}]$
- Note: not a suffix of P[0,..,j]

The Knuth-Morris-Pratt Algorithm

- Specifically, f is defined to be the longest prefix of the pattern $P[0, . ., j]$ that is also a suffix of $P[1, . ., j]$
- Note: not a suffix of P[0,..,j]
- Example:
- value of the KMP failure function:

j	0	1	2	3	4	5
$P[j]$	a	b	a	b	a	c
$f(j)$	0	0	1	2	3	0

- This shows how much of the beginning of the string matches up to the portion immediately preceding a failed comparison.
- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1

The KMP Algorithm (contd.)

- the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T, P)
Input: Strings T (text) with n characters and P (pattern) with m characters.
Output: Starting index of the first substring of T matching P, or an indication that P is not a substring of T.
$f \leftarrow$ KMPFailureFunction (P) \{build failure function\}
$i \leftarrow 0$
$j \leftarrow 0$
while $i<n$ do
if $P[j]=T[i]$ then
if $j=m-1$ then
return $i-m-1$ \{a match\}
$i \leftarrow i+1$
$j \leftarrow j+1$
else if $j>0$ then $\{$ no match, but we have advanced\}
$j \leftarrow f(j-1)\{\mathrm{j}$ indexes just after matching prefix in P$\}$ else

$$
i \leftarrow i+1
$$

return "There is no substring of T matching P "

The KMP Algorithm (contd.)

-The KMP failure function: Pseudo-Code

```
Algorithm KMPFailureFunction(P);
    Input: String P (pattern) with m characters
    Ouput: The faliure function }f\mathrm{ for }P\mathrm{ , which maps j to
        the length of the longest prefix of P that is a suffix
        of P[1,..,j]
    i\leftarrow1
    j\leftarrow0
    while}i\leqm-1 d
        if P[j] = P[i] then
            {we have matched j+1 characters}
            f(i)\leftarrowj+1
            i\leftarrowi+1
            j\leftarrowj+1
        else if j>0 then
            {j indexes just after a prefix of P that matches}
            j\leftarrowf(j-1)
        else
            {there is no match}
            f(i)\leftarrow0
            i\leftarrowi+1
```


The KMP Algorithm (contd.)

- A graphical representation of the KMP string searching algorithm

The KMP Algorithm (contd.)

- Time Complexity Analysis
- define $k=i-j$
- In every iteration through the while loop, one of three things happens.
- 1) if $T[i]=P[j]$, then i increases by 1 , as does j k remains the same.
- 2) if $T[i]!=P[j]$ and $j>0$, then i does not change and k increases by at least 1 , since k changes from $i-j$ to $i-f(j-1)$
-3) if $T[i]!=P[j]$ and $j=0$, then i increases by 1 and k increases by 1 since j remains the same.

The KMP Algorithm (contd.)

- Thus, each time through the loop, either i or k increases by at least 1 , so the greatest possible number of loops is $2 n$
- This of course assumes that f has already been computed.
- However, f is computed in much the same manner as KMPMatch so the time complexity argument is analogous. KMPFailureFunction is $\boldsymbol{O}(m)$
- Total Time Complexity: $\boldsymbol{O}(n+m)$

Regular Expressions

- notation for describing a set of strings, possibly of infinite size
- ε denotes the empty string
- $\mathrm{ab}+\mathbf{c}$ denotes the set $\{\mathrm{ab}, \mathrm{c}\}$
- a* denotes the set $\{\varepsilon, a, a a, ~ a a a, \ldots\}$
- Examples
- (a+b)* all the strings from the alphabet $\{a, b\}$
- $b^{*}\left(a b^{*} a\right)^{*} b^{*}$ strings with an even number of a 's
$-(a+b)^{*} \operatorname{sun}(a+b)^{*}$ strings containing the pattern "sun"
$-(a+b)(a+b)(a+b) a 4-l e t t e r$ strings ending in a

Finite State Automaton

- "machine" for processing strings

Composition of FSA's

Winter 2016
 COMP-250: Introduction to Computer Science Lecture 23, April 5, 2016

