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QuickSort

QuickSort

• Yet another sorting algorithm!

• Usually faster than other algorithms on average,

although worst-case is O(n2)

• Divide-and-conquer:

– Divide: Choose an element of the array for pivot.

Divide the elements into three groups: those smaller

than the pivot, those equal, and those larger.

– Conquer: Recursively sort each group.

– Combine: Concatenate the three sorted groups.



QuickSort running time

• Worse case:

– Already sorted array (either increasing or decreasing)

– T(n) = T(n-1) + c n + d

– T(n) is O(n2)

• Average case: If the array is in random order, the
pivot splits the array in roughly equal parts, so the
average running time is O(n log n)

• Advantage over mergeSort:

– constant hidden in O(n log n) are smaller for quickSort.
Thus it is faster by a constant factor

– QuickSort is easy to do “in-place”



• An algorithm is in-place if it uses only a constant
amount of memory in addition of that used to store
the input

• Importance of in-place sorting algorithms:

– If the data set to sort barely fits into memory, we don't
want an algorithm that uses twice that amount to sort
the numbers

• SelectionSort and InsertionSort are in-place: all
we are doing is moving elements around the array

• MergeSort is not in-place, because of the merge
procedure, which requires a temporary array

• QuickSort can easily be made in-place...

In-place algorithms



Algorithm partition(A, start, stop)

Input: An array A, indices start and stop.

Output: Returns an index j and rearranges the elements of A
such that for all i<j, A[i] ! A[j] and
for all k>i, A[k] " A[j].

pivot # A[stop]

left # start

right # stop - 1

while left ! right do

while left ! right  and A[left] ! pivot) do left # left + 1

     while (left ! right and A[right] " pivot) do right # right -1

 if (left < right ) then  exchange A[left] $ A[right]

exchange A[stop] $ A[left]

return left

Partition

j



Example of execution of partition

A = [  6   3   7   3   2   5   7   5  ]        pivot = 5

A = [  6   3   7   3   2   5   7   5  ]      swap 6, 2

A = [  2   3   7   3   6   5   7   5  ]

A = [  2   3   7   3   6   5   7   5  ]      swap 7,3

A = [  2   3   3   7   6   5   7   5  ]

A = [  2   3   3   7   6   5   7   5  ]      swap 7,pivot

A = [  2   3   3   5   6   5   7   7  ]
!5                          "5

Partition
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In-place quickSort

Algorithm quickSort(A, start, stop)

Input: An array A to sort, indices start and stop

Output: A[start...stop] is sorted

if (start < stop) then

pivot # partition(A, start, stop)

quickSort(A, start, pivot-1)

quickSort(A, pivot+1, stop)



RandomizedQuicksort(A,start,stop) { 
   if |A| = 0 return

   choose a pivot A[i] uniformly at random (start ≤ i ≤ stop) 
   exchange A[i] ⬌ A[stop] 

  pivot ← partition(A,start,stop) 

   RandomizedQuicksort(A, start, pivot-1)
   RandomizedQuicksort(A, pivot+1, stop)
}

Randomized Quicksort



Quicksort

Running time.
■ [Best case.]  Select the median element as the pivot:  quicksort makes Θ(n log n) 

comparisons.
■ [Worst case.]  Select the smallest (or largest) element as the pivot:  quicksort 

makes Θ(n2) comparisons.

Randomize.  Protect against worst case by choosing pivot at random. 

Intuition.  If we always select a pivot that is bigger than 25% of the elements and 

smaller than 25% of the elements, then quicksort makes Θ(n log n) comparisons.

Notation.  Label elements so that x1 < x2 < … < xn.



Theorem.  Expected # of comparisons is O(n log n). 
 

Theorem.  [Knuth 1973]  Stddev of number of comparisons is ~ 0.65n.

Ex.  If n = 1 million, the probability that randomized quicksort takes less than 4n ln n 

comparisons is at least 99.94%.

       Chebyshev's inequality.  Pr[|X - μ| ≥ kδ]  <  1 / k2.

Randomized Quicksort:  Expected Number of Comparisons

Mean   Stddev



1Strings and Pattern Matching

STRINGS AND PATTERN
MATCHING

• Brute Force,Rabin-Karp, Knuth-Morris-Pratt

• Regular Expressions

What’s up?

I’m looking for some string.

That’s quite a trick considering
that you have no eyes.

Oh yeah?  Have you seen your writing?
It looks like an EKG!



2Strings and Pattern Matching

String Searching
• The previous slide is not a great example of what is

meant by “String Searching.”  Nor is it meant to
ridicule people without eyes....

• The object of string searching is to find the location
of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations
for string searching are speed and efficiency.

• There are a number of string searching algorithms in
existence today, but the three we shall review are
Brute Force,Rabin-Karp, and Knuth-Morris-Pratt.
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3Strings and Pattern Matching

Brute Force
• The Brute Force algorithm compares the pattern to

the text, one character at a time, until unmatching
characters are found:

- Compared characters are italicized.
- Correct matches are in boldface type.

• The algorithm can be designed to stop on either the
first occurrence of the pattern, or upon reaching the
end of the text.

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
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⬇
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until

4Strings and Pattern Matching

Brute Force Pseudo-Code
• Here’s the pseudo-code

do
if (text letter == pattern letter)

compare next letter of pattern to next
letter of text

else
move pattern down text by one letter

while (entire pattern found or end of text)

cool cat Rolo went over the fence
cat
cool cat Rolo went over the fence
cat
cool cat Rolo went over the fence
cat

cool cat Rolo went over the fence
cat

cool_cat Rolo went over the fence
cat

cool cat Rolo went over the fence
cat



5Strings and Pattern Matching

Brute Force-Complexity
• Given a pattern M characters in length, and a text N

characters in length...

• Worst case:  compares pattern to each substring of
text of length M.  For example, M=5.

• This kind of case can occur for image data.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

....
N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

5 comparisons made AAAAH

• Total number of comparisons: M (N-M+1)

• Worst case time complexity: Ο(MN)
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6Strings and Pattern Matching

Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern found: Finds pattern in first M
positions of text.  For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparisons made

• Total number of comparisons: M

• Best case time complexity: Ο(M)
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Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern not found: Always mismatch
on first character.  For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

...

N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
1 comparison made OOOOH

• Total number of comparisons: N

• Best case time complexity: Ο(N) 7Strings and Pattern Matching
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Rabin-Karp
• The Rabin-Karp string searching algorithm

calculates a hash value for the pattern, and for each
M-character subsequence of text to be compared.

• If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

• If the hash values are equal, the algorithm will do a
Brute Force comparison between the pattern and the
M-character sequence.

• In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when
hash values match.

• Perhaps an example will clarify some things...
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Rabin-Karp Example
Hash value of “AAAAA” is 37

Hash value of “AAAAH” is 100

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH
37≠100 1 comparison made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH

AAAAH
37≠100 1 comparison made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made
...

N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH

5 comparisons made  100=100
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Rabin-Karp Algorithm
pattern is M characters long

hash_p=hash value of pattern
hash_t=hash value of first M letters in

body of text

do
if (hash_p == hash_t)

brute force comparison of pattern
and selected section of text

hash_t = hash value of next section of
          text, one character over

while (end of text or
          brute force comparison == true)
until
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Rabin-Karp
• Common Rabin-Karp questions:

“What is the hash function used to calculate
values for character sequences?”

“Isn’t it time consuming to hash
every one of the M-character
sequences in the text body?”

“Is this going to be on the final?”

• To answer some of these questions, we’ll have to get
mathematical.
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Rabin-Karp Math
• Consider an M-character sequence as an M-digit

number in base b, where b is the number of letters in
the alphabet.  The text subsequence t[i .. i+M-1] is
mapped to the number

x(i) = t[i]⋅bM-1 + t[i+1]⋅bM-2 +...+ t[i+M-1]

• Furthermore, given x(i) we can compute x(i+1) for
the next subsequence t[i+1 .. i+M] in constant time,
as follows:

x(i+1) = t[i+1]⋅bM-1 + t[i+2]⋅bM-2 +...+ t[i+M]

x(i+1) = x(i)⋅b Shift left one digit

- t[i]⋅b M  Subtract leftmost digit

+ t[i+M]  Add new rightmost digit

• In this way, we never explicitly compute a new
value.  We simply adjust the existing value as we
move over one character.
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Rabin-Karp Math Example
• Let’s say that our alphabet consists of 10 letters.

• our alphabet = a, b, c, d, e, f, g, h, i, j

• Let’s say that “a” corresponds to 1, “b” corresponds
to 2 and so on.

The hash value for string “cah” would be ...

3*100 + 1*10 + 8*1 = 318
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Rabin-Karp Mods
• If M is large, then the resulting value (~bM) will be

enormous.  For this reason, we hash the value by
taking it mod a prime number q.

• The mod function (% in Java) is particularly useful
in this case due to several of its inherent properties:
- [(x mod q) + (y mod q)] mod q = (x+y) mod q
- (x mod q) mod q = x mod q

• For these reasons:

h(i) = ((t[i]⋅ bM-1 mod q) +
(t[i+1]⋅ bM-2 mod q) + ... +
(t[i+M-1] mod q)) mod q

h(i+1) =( h(i)⋅ b  mod q
Shift left one digit

-t[i]⋅ bM mod q
Subtract leftmost digit

+t[i+M] mod q )
Add new rightmost digit

mod q
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Rabin-Karp Complexity
• If a sufficiently large prime number is used for the

hash function, the hashed values of two different
patterns will usually be distinct.

• If this is the case, searching takes O(N) time, where
N is the number of characters in the larger body of
text.

• It is always possible to construct a scenario with a
worst case complexity of O(MN). This, however, is
likely to happen only if the prime number used for
hashing is small.
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The Knuth-Morris-Pratt
Algorithm

• The Knuth-Morris-Pratt (KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

• A failure function (f) is computed that indicates how
much of the last comparison can be reused if it fails.

• Specifically, f is defined to be the longest prefix of
the pattern P[0,..,j] that is also a suffix of P[1,..,j]
- Note: not a suffix of P[0,..,j]

• Example:
- value of the KMP failure function:

• This shows how much of the beginning of the string
matches up to the portion immediately preceding a
failed comparison.
- if the comparison fails at (4), we know the a,b in

positions 2,3 is identical to positions 0,1

j 0 1 2 3 4 5
P[j] a b a b a c
f(j) 0 0 1 2 3 0
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The KMP Algorithm (contd.)
• the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input: Strings T (text) with n characters and P

(pattern) with m characters.
Output: Starting index of the first substring of T

matching P, or an indication that P is not a
substring of T.

f ← KMPFailureFunction(P) {build failure function}
i ← 0
j ← 0
while i < n do

if P[j] = T[i] then
if j = m - 1 then

return i - m - 1 {a match}
i ← i + 1
j ← j + 1

else if j > 0 then {no match, but we have advanced}
j ← f(j-1) {j indexes just after matching prefix in P}

else
i ← i + 1

return “There is no substring of T matching P”
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The KMP Algorithm (contd.)
•The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j to
the length of the longest prefix of P that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do
if P[j] = P[i] then
{we have matched j + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{j indexes just after a prefix of P that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1
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The KMP Algorithm (contd.)
• A graphical representation of the KMP string

searching algorithm

baaa b c

aaaaaaaa bbbb cccc aa

1 2 3 4 5 6

7

8 9 10 11 12

13

14 15 16 17 18

baaa b c

baaa b c

baaa b c

baaa b c
19

no comparison
needed here
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The KMP Algorithm (contd.)
• Time Complexity Analysis

• define k = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], then i increases by 1, as does j

k remains the same.
- 2) if T[i] != P[j] and j > 0, then i does not change

and k increases by at least 1, since k changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and
k increases by 1 since j remains the same.

• Thus, each time through the loop, either i or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes that f has already been
computed.

• However, f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction is O(m)

• Total Time Complexity: O(n + m)
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from i - j to i - f(j-1)

- 3) if T[i] != P[j] and j = 0, then i increases by 1 and
k increases by 1 since j remains the same.

• Thus, each time through the loop, either i or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes that f has already been
computed.

• However, f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction is O(m)

• Total Time Complexity: O(n + m)
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Regular Expressions
• notation for describing a set of strings, possibly of

infinite size

• ε denotes the empty string

• ab + c denotes the set {ab, c}

• a* denotes the set {ε, a, aa, aaa, ...}

• Examples
- (a+b)* all the strings from the alphabet {a,b}
- b*(ab*a)*b* strings with an even number of a’s
- (a+b)*sun(a+b)* strings containing the pattern

“sun”
- (a+b)(a+b)(a+b)a 4-letter strings ending in a
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Finite State Automaton
• “machine” for processing strings
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Composition of FSA’s
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