Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture 20, March 24, 2016

Public Announcement

GETTING YOUR DREAM TECH INTERNSHIP

MARCH $29^{\text {TH }}$ 6PM-7:30PM
TROTTIER 0070
COME LEARN HOW TO APPLY TO COMPANIES, PREPARE FOR INTERVIEWS, AND WHAT COURSES TO TAKE! PRESENTED BY SUCCESSFUL INTERNS:

Lucille Hua
CS U3
Airbnb,
Google, Sony
Ericsson

Michael Ho
Soft. Eng. U3 Facebook, Apple, Microsoft, Yahoo

Kevin Luk CS/Bio U3
Knewton, SAP, CIHR

Pizza and swag provided by

Public Announcement

Mercury Course Evaluations

Course evaluations matter. Evaluate your courses and instructors!

Default period:

March 21 - May 1
Condensed period:
March 21 - April 17
Click HERE to
complete your course evaluations.

Heaps I

- Heaps
- Properties
- Insertion and Deletion

Heaps

- A heap is a binary tree T that stores a collection of keys (or key-element pairs) at its internal nodes and that satisfies two additional properties:
- Order Property: key(parent) \leq key(child)
- Structural Property: all levels are full, except the last one, which is left-filled (complete binary tree)

Not Heaps

- bottom level is not left-filled

Not Heaps

- key(parent)> key(child)

Height of a Heap

A heap T storing n keys has height $h=\lceil\log (n+1)\rceil$, which is $\mathrm{O}(\log n)$

- $n \geq 1+2+4+\ldots+2^{h-2}+1=2^{h-1}-1+1=2^{h-1}$

Height of a Heap

- $n \leq 1+2+4+\ldots+2^{h-1}=2^{h}-1$
0
1
$h-2$
$h-1$
h

- Therefore $2^{h-1} \leq n \leq 2^{h}-1$
- Taking logs, we get $\log (n+1) \leq h \leq \log n+1$
- Which implies $\boldsymbol{h}=\lceil\boldsymbol{\operatorname { l o g }}(\boldsymbol{n}+\mathbf{1})\rceil$

Heap Insertion

So here we go ...
The key to insert is $\mathbf{6}$

Heap Insertion

Add the key in the next available position in the heap.

Now begin Upheap.

Upheap

- Swap parent-child keys out of order

Upheap

- Swap parent-child keys out of order

Upheap Continues

Upheap Continues

End of Upheap

- Upheap terminates when new key is greater than the key of its parent or the top of the heap is reached
- (total \#swaps) $\leq(h-1)$, which is $\mathrm{O}(\log n)$

Removal From a Heap RemoveMin()

- The removal of the top key leaves a hole
- We need to fix the heap
- First, replace the hole with the last key in the heap
- Then, begin Downheap

Downheap

Downheap

Downheap compares the parent with the smallest child. If the child is smaller, it switches the two.

Downheap Continues

Downheap Continues

Downheap Continues

Downheap Continues

End of Downheap

- Downheap terminates when the key is greater than the keys of both its children or the bottom of the heap is reached.
- (total \#swaps) $\leq(h-1)$, which is $\mathrm{O}(\log n)$

Heaps II

- Implementation
- HeapSort
- Bottom-Up Heap Construction
- Locators

Implementation of a Heap

public class HeapPriorityQueue implements PriorityQueue \{

BinaryTree T;
Position last;
Comparator comparator;

Implementation of a Heap(cont.)

- Two ways to find the insertion position z in a heap:

Implementation of a Heap(cont.)

- Two ways to find the insertion position z in a heap:

Vector Based Implementation

- Updates in the underlying tree occur only at the "last element"
- A heap can be represented by a vector, where the node at rank i has
- left child at rank $2 i$ and
- right child at rank $2 i+1$

Vector Based Implementation

- The leaves do no need to be explicitly stored
- Insertion and removals into/from the heap correspond to insertLast and removeLast on the vector, respectively

Heap Sort

- All heap methods run in logarithmic time or better
- If we implement PriorityQueueSort using a heap for our priority queue, insertlem and removeMin each take $\mathrm{O}(\log k), k$ being the number of elements in the heap at a given time.
- We always have at most n elements in the heap, so the worst case time complexity of these methods is $\mathrm{O}(\log n)$.
- Thus each phase takes $\mathrm{O}(n \log n)$ time, so the algorithm runs in $\mathrm{O}(n \log n)$ time also.
- This sort is known as heap-sort.
- The $\mathrm{O}(n \log n)$ run time of heap-sort is much better than the $\mathrm{O}\left(n^{2}\right)$ run time of selection and insertion sort.

In-Place Heap-Sort

- Do not use an external heap
- Embed the heap into the sequence, using the vector representation

Bottom-Up Heap Construction

- build $(n+1) / 2$ trivial one-element heaps

Bottom-Up Heap Construction

- now build three-element heaps on top of them

Bottom-Up Heap Construction

- downheap to preserve the order property

Bottom-Up Heap Construction

- now form seven-element heaps

Analysis of Bottom-Up Heap Construction

- Proposition: Bottom-up heap construction with n keys takes $\boldsymbol{O}(n)$ time.
- Insert $(n+1) / 2$ nodes
- Insert $(n+1) / 4$ nodes and downheap them
- Insert $(n+1) / 8$ nodes and downheap them

- n inserts, $n / 2$ upheaps with total $\boldsymbol{O}(n)$ running time

INTRODUCTION TO ALGORITHMS

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node annotated by $i: j$ indicates a comparison between a_{i} and a_{j}. A leaf annotated by the permutation $\langle\pi(1), \pi(2), \ldots, \pi(n)\rangle$ indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$. The shaded path indicates the decisions made when sorting the input sequence $\left\langle a_{1}=6, a_{2}=8, a_{3}=5\right\rangle$; the permutation $\langle 3,1,2\rangle$ at the leaf indicates that the sorted ordering is $a_{3}=5 \leq a_{1}=6 \leq a_{2}=8$. There are 3 ! $=6$ possible permutations of the input elements, so the decision tree must have at least 6 leaves.

Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture 20, March 24, 2016

Hardik
Omar
Faiz
Lekan

Faizy
Chris
David B.
David B.R.

DoYeon

