Winter 2016 COMP-250: Introduction to Computer Science Lecture 20, March 24, 2016

Public Announcement -

GETTING YOUR DREAM TECH INTERNSHIP

MARCH 29TH 6PM-7:30PM

TROTTIER 0070

COME LEARN HOW TO APPLY TO COMPANIES, PREPARE FOR INTERVIEWS, AND WHAT COURSES TO TAKE! PRESENTED BY SUCCESSFUL INTERNS:

Pizza and swag provided by

Lucille Hua CS U3 Airbnb, Google, Sony Ericsson

Michael Ho Soft. Eng. U3 Facebook, Apple, Microsoft, Yahoo

Kevin Luk CS/Bio U3 Knewton, SAP, CIHR

Public Announcement –

_

Course :	Title:	
COMP 250 Sect: 1	Intro to Computer Science	
Exam Date: 4/28/2016		Exam Time: 2:00:00 PM

Public Announcement

Mercury Course Evaluations

Course evaluations matter. Evaluate your courses and instructors!

不

Default period: March 21 - May 1 Condensed period: March 21 - April 17

Click **HERE** to complete your course evaluations.

HEAPS I

- Heaps
- Properties
- Insertion and Deletion

Heaps

- A *heap* is a binary tree *T* that stores a collection of keys (or key-element pairs) at its internal nodes and that satisfies two additional properties:
 - *Order Property:* key(parent) ≤ key(child)
 - *Structural Property*: all levels are full, except the last one, which is left-filled (*complete binary tree*)

Height of a Heap

A heap *T* storing *n* keys has height $h = \lceil \log(n + 1) \rceil$, which is O(log *n*)

- Taking logs, we get $\log (n + 1) \le h \le \log n + 1$
- Which implies $h = \lceil \log(n+1) \rceil$

Heap Insertion

Add the key in the *next available position* in the heap.

Now begin *Upheap*.

- *Upheap* terminates when new key is greater than the key of its parent **or** the top of the heap is reached
- (total #swaps) $\leq (h-1)$, which is O(log *n*)

- The removal of the top key leaves a hole
- We need to fix the heap
- First, replace the hole with the last key in the heap
- Then, begin *Downheap*

Downheap Continues

Downheap Continues

- *Downheap* terminates when the key is greater than the keys of both its children **or** the bottom of the heap is reached.
- (total #swaps) $\leq (h 1)$, which is O(log *n*)

HEAPS II

- Implementation
- HeapSort
- Bottom-Up Heap Construction
- Locators

Implementation of a Heap

Implementation of a Heap(cont.)

• Two ways to find the insertion position z in a heap:

Implementation of a Heap(cont.)

• Two ways to find the insertion position z in a heap:

Vector Based Implementation

• Updates in the underlying tree occur only at the "last element"

7

• A heap can be represented by a vector, where the node at rank *i* has

5

11 12

6

13

- left child at rank 2*i* and
- right child at rank 2i + 1

2

9

10

4

8

Vector Based Implementation

- The leaves do no need to be explicitly stored
- Insertion and removals into/from the heap correspond to insertLast and removeLast on the vector, respectively

Heap Sort

- All heap methods run in logarithmic time or better
- If we implement PriorityQueueSort using a heap for our priority queue, insertItem and removeMin each take O(log k), k being the number of elements in the heap at a given time.
- We always have at most *n* elements in the heap, so the worst case time complexity of these methods is O(log *n*).
- Thus each phase takes O(*n* log *n*) time, so the algorithm runs in O(*n* log *n*) time also.
- This sort is known as *heap-sort*.
- The $O(n \log n)$ run time of heap-sort is much better than the $O(n^2)$ run time of selection and insertion sort.

In-Place Heap-Sort

- Do not use an external heap
- Embed the heap into the sequence, using the vector representation

Analysis of Bottom-Up Heap Construction

- Proposition: Bottom-up heap construction with *n* keys takes *O*(*n*) time.
 - Insert (n + 1)/2 nodes
 - Insert (n + 1)/4 nodes and downheap them
 - Insert (n + 1)/8 nodes and downheap them

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node annotated by i:j indicates a comparison between a_i and a_j . A leaf annotated by the permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$. The shaded path indicates the decisions made when sorting the input sequence $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$; the permutation $\langle 3, 1, 2 \rangle$ at the leaf indicates that the sorted ordering is $a_3 = 5 \leq a_1 = 6 \leq a_2 = 8$. There are 3! = 6 possible permutations of the input elements, so the decision tree must have at least 6 leaves.

Winter 2016 COMP-250: Introduction to Computer Science Lecture 20, March 24, 2016

Hardik Omar

Faiz

Lekan

David B. David B.R. Chris DoYeon