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1Depth-First Search

DEPTH-FIRST SEARCH
• Graph Traversals

• Depth-First Search
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2Depth-First Search

Exploring a Labyrinth Without
Getting Lost

• A depth-first search (DFS) in an undirected graph
G is like wandering in a labyrinth with a string and a
can of red paint without getting lost.

• We start at vertex s, tying the end of our string to the
point and painting s “visited”. Next we label s as our
current vertex called u.

• Now we travel along an arbitrary edge (u,v).

• If edge (u,v) leads us to an already visited vertex v
we return to u.

• If vertex v is unvisited, we unroll our string and
move to v, paint v “visited”, set v as our current
vertex, and repeat the previous steps.

• Eventually, we will get to a point where all incident
edges on u lead to visited vertices. We then
backtrack by unrolling our string to a previously
visited vertex v. Then v becomes our current vertex
and we repeat the previous steps.
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Exploring a Labyrinth Without
Getting Lost (cont.)

• Then, if we all incident edges on v lead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we have
traveled, finding and exploring unexplored edges,
and repeating the procedure.

• When we backtrack to vertex s and there are no
more unexplored edges incident on s, we have
finished our DFS search.
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Depth-First Search
Algorithm DFS(v);

Input: A vertex v in a graph
Output: A labeling of the edges as “discovery” edges

and “backedges”
for each edge e incident on v do

if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then

label e as a discovery edge
recursively call DFS(w)

else

label e as a backedge
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adjacent Vertex

visited vertex
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Determining Incident Edges
• DFS depends on how you obtain the incident edges.

• If we start at A and we examine the edge to F, then
to B, then E, C, and finally G

The resulting graph is:
discoveryEdge
backEdge
return from
dead end

If we instead examine the tree starting at A and
looking at F, the C, then E, B, and finally F,

the resulting set of backEdges, discoveryEdges and
recursion points is different.

• Now an example of a DFS.

A F B E C G

A G C E B F

A

F

ED

B
C

G
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DFS Properties
• Proposition 9.12 : Let G be an undirected graph on

which a DFS traversal starting at a vertex s has been
preformed. Then:

1) The traversal visits all vertices in the
 connected component of s

2) The discovery edges form a spanning tree of
 the connected component of s

• Justification of 1):
- Let’s use a contradiction argument: suppose there

is at least on vertex v not visited and let w be the
first unvisited vertex on some path from s to v.

- Because w was the first unvisited vertex on the
path, there is a neighbor u that has been visited.

- But when we visited u we must have looked at
edge(u, w). Therefore w must have been visited.

- and justification

• Justification of 2):
- We only mark edges from when we go to unvisited

vertices. So we never form a cycle of discovery
edges, i.e. discovery edges form a tree.

- This is a spanning tree because DFS visits each
vertex in the connected component of s
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Running Time Analysis
• Remember:

- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from

each of its vertices

• For ns vertices and ms edges in the connected
component of the vertex s, a DFS starting at s runs in
O(ns +ms) time if:
- The graph is represented in a data structure, like

the adjacency list, where vertex and edge methods
take constant time

- Marking a vertex as explored and testing to see if a
vertex has been explored takes O(degree)

- By marking visited nodes, we can systematically
consider the edges incident on the current vertex
so we do not examine the same edge more than
once.
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Breadth-First Search
•Like DFS, a Breadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
definesaspanningtreewithseveralusefulproperties

-The starting vertex s has level 0, and, as in DFS,
defines that point as an “anchor.”

-In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

-These edges are placed into level 1
-In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

-This continues until every vertex has been
assigned a level.

-The label of any vertex v corresponds to the length
of the shortest path from s to v.
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BFS Pseudo-Code
Algorithm BFS(s):

Input: A vertex s in a graph
Output:Alabelingoftheedgesas“discovery”edges

and “cross edges”
initialize container L0 to contain vertex s
i ← 0
while Li is not empty do

create container Li+1 to initially be empty
for each vertex v in Li do

for eachedge e incident on v do
if edge e is unexplored then

let w be the other endpoint of e
if vertex w is unexplored then
 label e as a discovery edge
 insert w into Li+1
else
 label e as a cross edge

i ← i + 1



14Generic DFS and BFS

Properties of BFS
• Proposition:Let G be an undirected graph on which

a BFS traversal starting at vertex s has been
performed. Then
-The traversal visits all vertices in the connected

component of s.
-The discovery-edges form a spanning tree T,

which we call the BFS tree, of the connected
component of s

-For each vertex v at level i,the path of the BFS tree
T between s and v has i edges, and any other path
of G between s and v has at least i edges.

- I f(u, v) is an edge that is not in the BFS tree, then
the level numbers of u and v differ by at most one.

• Proposition: Let G be a graph with n vertices and m
edges. A BFS traversal of G takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum

number of edges of any path between s and v.
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