Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture I8, March I7, 2016

DEPTH-First SEARCH

- Graph Traversals
- Depth-First Search

Exploring a Labyrinth Without Getting Lost

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.
- We start at vertex s, tying the end of our string to the point and painting s "visited". Next we label s as our current vertex called u.
- Now we travel along an arbitrary edge (u, v).
- If edge (u, v) leads us to an already visited vertex v we return to u.

Exploring a Labyrinth Without Getting Lost

- If vertex v is unvisited, we unroll our string and move to v, paint v "visited", set v as our current vertex, and repeat the previous steps.
- Eventually, we will get to a point where all incident edges on u lead to visited vertices. We then backtrack by unrolling our string to a previously visited vertex v. Then v becomes our current vertex and we repeat the previous steps.

Exploring a Labyrinth Without Getting Lost (cont.)

- Then, if all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure.
- When we backtrack to vertex s and there are no more unexplored edges incident on s, we have finished our DFS search.

Depth-First Search

Algorithm DFS(v);
Input: A vertex v in a graph
Output: A labeling of the edges as "discovery" edges and "backedges"
for each edge e incident on v do
if edge e is unexplored then let w be the other endpoint of e if vertex w is unexplored then label e as a discovery edge recursively call $\mathbf{D F S}(w)$
else
label e as a backedge

Depth-First Search

```
Algorithm DFS(v);
    Input: A vertex v in a graph
    Output: A labeling of the edges as "discovery" edges
        and "backedges"
    for each edge e incident on v}\mathrm{ do
        if edge }e\mathrm{ is unexplored then
            let w}\mathrm{ be the other endpoint of e
            if vertex w}\mathrm{ is unexplored then
            label }e\mathrm{ as a discovery edge
            recursively call DFS(w)
        else
        label }e\mathrm{ as a backedge
```


Determining Incident Edges

- DFS depends on how you obtain the incident edges.
- If we start at A and we examine the edge to F , then to B , then E, C, and finally G

The resulting graph is:
\longrightarrow discoveryEdge
$--\rightarrow$ backEdge
$--\rightarrow$ return from dead end

Determining Incident Edges

- DFS depends on how you obtain the incident edges.

If we instead examine the tree starting at A and looking at G , the C , then E, B, and finally F ,

the resulting set of backEdges, discoveryEdges and recursion points is different.

- Now an example of a DFS.

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& B \rightarrow\langle A\rangle \rightarrow \square \\
& \square \rightarrow\langle\wedge \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\hat{\mathrm{~F}}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \square \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \mid\langle\hat{\mathrm{E}}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\hat{\mathrm{~F}}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \square \rightarrow\langle\Delta \rightarrow \square \\
& \mathrm{D} \rightarrow \mathrm{r}) \rightarrow \text { (} \mathrm{E}) \rightarrow \square \\
& \mathrm{E} \rightarrow(\mathrm{~s}) \rightarrow(\mathrm{A}) \rightarrow(\mathrm{i}) \rightarrow \text { (} \mathrm{F}) \rightarrow \square \\
& \text { (} \mathrm{F} \rightarrow(\mathrm{~A}) \rightarrow(\mathrm{B}) \rightarrow\langle\mathrm{A}) \rightarrow \square \\
& \text { Step 3: } \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \quad \text { Step 4. } \quad \text { Back Edge } \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \quad \mathrm{D}-\mathrm{E} \\
& \mathrm{~F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& B \rightarrow\langle\hat{A}\rangle \rightarrow \square \quad \text { Step 5: } \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& B \rightarrow\langle\hat{A}\rangle \rightarrow \square \quad \text { Step 6: } \\
& \square \mathbf{C} \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\hat{\mathrm{E}}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \quad \mathrm{D}-\dot{\mathrm{E}}{ }^{\prime} \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \text { F } \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\hat{\mathrm{~A}}\rangle \rightarrow \square \quad \text { Step 7: } \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \square \rightarrow\langle\wedge \rightarrow \square \quad \text { Step 9: } \\
& \text { (} \rightarrow\langle\wedge \rightarrow \text {, } \\
& \mathrm{D} \rightarrow \text { (} \mathrm{r}) \text { (} \mathrm{E}) \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \quad \text { Step 10: } \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \begin{array}{l}
\mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\hat{\mathrm{A}}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \\
\mathrm{F} \rightarrow\langle\hat{\mathrm{E}}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \mathrm{D}
\end{array} \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \text { Step 11: }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \text { Step 12: } \\
& \begin{array}{l}
\mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
\mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{array} \\
& \mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\widehat{\mathrm{~A}}\rangle \rightarrow \square \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \mathrm{E} \rightarrow\langle\hat{\mathrm{E}}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
& \mathrm{F} \rightarrow\langle\hat{\mathrm{E}}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\hat{\mathrm{A}}\rangle \rightarrow \square \\
& \mathrm{G} \rightarrow\langle\hat{\mathrm{~A}}\rangle \rightarrow\langle\hat{\mathrm{E}}\rangle \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \quad \text { Step 14: } \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \begin{array}{l}
\mathrm{E} \rightarrow\langle\mathrm{~N}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
\mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
\mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\hat{\mathrm{~F}}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\hat{\mathrm{~A}}\rangle \rightarrow \square \quad \text { Step } 15 \\
& \square \mathbf{C} \rightarrow\langle\hat{A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \begin{array}{l}
\mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{N}\rangle \rightarrow \square \\
\mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
\mathrm{G} \rightarrow\langle\hat{\mathrm{~A}}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow\langle\hat{\mathrm{~F}}\rangle \rightarrow\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{C}\rangle \rightarrow\langle\mathrm{G}\rangle \rightarrow \square \\
& \mathrm{B} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \text { Step 16: } \\
& \mathrm{C} \rightarrow\langle\mathrm{~A}\rangle \rightarrow \square \\
& \mathrm{D} \rightarrow\langle\mathrm{~F}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square \\
& \begin{array}{l}
\mathrm{E} \rightarrow\langle\mathrm{G}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{F}\rangle \rightarrow \square \\
\mathrm{F} \rightarrow\langle\mathrm{E}\rangle \rightarrow\langle\mathrm{D}\rangle \rightarrow\langle\mathrm{A}\rangle \rightarrow \square \\
\mathrm{G} \rightarrow\langle\mathrm{~A}\rangle \rightarrow\langle\mathrm{E}\rangle \rightarrow \square
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& B \rightarrow\langle\Delta \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D} \rightarrow \text { (} \mathrm{r}) \rightarrow \text { (} \mathrm{E}) \rightarrow \square
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \rightarrow(\mathrm{A}) \rightarrow \text { (} \mathrm{E}) \rightarrow \text { व } \\
& \text { Step 17: }
\end{aligned}
$$

DFS Properties

- Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s has been preformed. Then:

1) The traversal visits all vertices in the connected component of s
2) The discovery edges form a spanning tree of the connected component of s

- Justification of 1):
- Let's use a contradiction argument: suppose there is at least on vertex v not visited and let w be the first unvisited vertex on some path from s to v.
- Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
- But when we visited u we must have looked at edge (u, w). Therefore w must have been visited.
- and justification

DFS Properties

- Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s has been preformed. Then:

1) The traversal visits all vertices in the connected component of s
2) The discovery edges form a spanning tree of the connected component of s

- Justification of 2):
- We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery edges, i.e. discovery edges form a tree.
- This is a spanning tree because DFS visits each vertex in the connected component of s

Running Time Analysis

- Remember:
- DFS is called on each vertex exactly once.
- Every edge is examined exactly twice, once from each of its vertices
- For n_{s} vertices and m_{s} edges in the connected component of the vertex s, a DFS starting at s runs in $\mathrm{O}\left(n_{s}+m_{s}\right)$ time if:
- The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
- Marking a vertex as explored and testing to see if a vertex has been explored takes O(degree)
- By marking visited nodes, we can systematically consider the edges incident on the current vertex so we do not examine the same edge more than once.

Breadth-First Search

Breadth-First Search

-Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so definesaspanningtreewithseveralusefulproperties
-The starting vertex s has level 0 , and, as in DFS, defines that point as an "anchor."
-In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
-These edges are placed into level 1
-In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
-This continues until every vertex has been assigned a level.
-The label of any vertex v corresponds to the length of the shortest path from s to v.

BFS - A Graphical Representation

 a)0

BFS - A Graphical Representation b)
$0 \quad 1$

BFS - A Graphical Representation

BFS - A Graphical Representation

BFS - A Graphical Representation

f)

0
1
2
3

4

0

BFS Pseudo-Code

Algorithm BFS(s):
Input: A vertex s in a graph
Output:Alabelingoftheedgesas"discovery"edges and "cross edges"
initialize container L_{0} to contain vertex s
$i \leftarrow 0$
while L_{i} is not empty do
create container L_{i+1} to initially be empty
for each vertex v in L_{i} do
for eachedge e incident on v do
if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
insert w into $\mathrm{L}_{\mathrm{i}+1}$
else
label e as a cross edge
$i \leftarrow i+1$

Properties of BFS

- Proposition:Let G be an undirected graph on which a BFS traversal starting at vertex s has been performed. Then
-The traversal visits all vertices in the connected component of s.
-The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected component of s
-For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
- I $\mathrm{f}(u, v)$ is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.

Properties of BFS

- Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $\mathrm{O}(n+m)$. Also, there exist $\mathrm{O}(n+m)$ time algorithms based on BFS for the following problems:
-Testing whether G is connected.
-Computing a spanning tree of G
-Computing the connected components of G
-Computing, for every vertex v of G, the minimum number of edges of any path between s and v.

Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture I8, March I7, 2016

