Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture 16, March I0, 2016

GRAPHS

- Definitions
- Examples
- The Graph ADT

What is a Graph?

- A graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is composed of:
\mathbf{V} : set of vertices
\mathbf{E} : set of edges connecting the vertices in \mathbf{V}
- An edge $\mathbf{e}=(\mathrm{u}, \mathrm{v})$ is a pair of vertices
- Example:

$$
\begin{aligned}
& \mathbf{V}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& \mathbf{E}= \\
& \{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{~d}), \\
& (\mathrm{b}, \mathrm{e}),(\mathrm{c}, \mathrm{~d}),(\mathrm{c}, \mathrm{e}), \\
& (\mathrm{d}, \mathrm{e})\}
\end{aligned}
$$

Applications

- electronic circuits

find the path of least resistance to COMP250

Applications

- networks (roads, flights, communications)

- scheduling (project planning)

Applications		
Graph	Nodes	Edges
transportation	street intersections	highways
communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
social	people	relationships
food web	species	predator-prey
software systems	functions	function calls
scheduling	tasks	precedence constraints
circuits	gates	wires

Graph Terminology

- adjacent vertices: connected by an edge
- degree (of a vertex): \# of adjacent vertices
 $\Sigma \operatorname{deg}(\mathrm{v})=2$ (\# edges)
$\mathrm{v} \in \mathrm{V}$
- Since adjacent vertices each count the adjoining edge, it will be counted twice

Graph Terminology

path: sequence of vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{k}}$ such that consecutive vertices v_{i} and v_{i+1} are adjacent.

More Graph Terminology

- simple path: no repeated vertices

More Graph Terminology

- cycle: simple path, except that the last vertex is the same as the first vertex

Even More Terminology

- connected graph: any two vertices are connected by some path

More Graph Terminology

- subgraph: subset of vertices and edges forming a graph
- connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

Yet another Terminology Slide!

- (free) tree - connected graph without cycles
- forest - collection of trees

Connectivity

Let $\mathbf{n}=$ \#vertices

$$
\mathbf{m}=\# e d g e s
$$

- complete graph - all pairs of vertices are adjacent

$$
\mathbf{m}=(1 / 2) \sum_{v \in \mathbf{V}} \operatorname{deg}(\mathbf{v})=(1 / 2) \sum_{v \in V}(\mathbf{n}-1)=\mathbf{n}(\mathbf{n}-1) / 2
$$

- Each of the \mathbf{n} vertices is incident to $\mathbf{n}-1$ edges, however, we would have counted each edge twice!!! Therefore, intuitively, $\mathbf{m}=\mathbf{n}(\mathbf{n}-1) / 2$.

$$
\begin{aligned}
& \mathrm{n}=5 \\
& \mathrm{~m}=(5 * 4) / 2=10
\end{aligned}
$$

More Connectivity

n = \#vertices
m = \#edges

- For a tree $\mathbf{m}=\mathbf{n}-1$

$$
\begin{aligned}
& \mathrm{n}=5 \\
& \mathrm{~m}=4
\end{aligned}
$$

- If $\mathbf{m}<\mathbf{n}-1, G$ is not connected

Spanning Tree

- A spanning tree of \mathbf{G} is a subgraph which
- is a tree
- contains all vertices of \mathbf{G}

G

spanning tree of \mathbf{G}

- Failure on any edge disconnects system (least fault tolerant)
- Roberto wants to call the TA's to suggest an extension for the next program...

- One fault will disconnect part of graph!!
- A cycle would be more fault tolerant and only requires \mathbf{n} edges

Koenigsberg

Can one walk across each bridge exactly once and return at the starting point?

- Consider if you were a UPS driver, and you didn't want to retrace your steps.
- In 1736, Euler proved that this is not possible

Graph Model(with parallel edges)

- Eulerian Tour: path that traverses every edge exactly once and returns to the first vertex
- Euler's Theorem: A graph has a Eulerian Tour if and only if all vertices have even degree

The Graph ADT

- The Graph ADT is a positional container whose positions are the vertices and the edges of the graph.
- size() Return the number of vertices plus the number of edges of G.
- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

The Graph ADT (contd.)

Notation: Graph G; Vertices v, w; Edge e; Object o

- numVertices()

Return the number of vertices of G.

- numEdges()

Return the number of edges of G.

- vertices() Return an enumeration of the vertices of G.
- edges() Return an enumeration of the edges of G.

The Graph ADT (contd.)

- directedEdges()

Return an enumeration of all directed edges in G.

- undirectedEdges()

Return an enumeration of all undirected edges in G.

- incidentEdges(v)

Return an enumeration of all edges incident on v.

- inIncidentEdges(v)

Return an enumeration of all the incoming edges to v.

- outIncidentEdges(v)

Return an enumeration of all the outgoing edges from v.

The Graph ADT (contd.)

- opposite (v, e)

Return an endpoint of e distinct from v

- degree (v)

Return the degree of v.

- inDegree (v)

Return the in-degree of v.

- outDegree(v) Return the out-degree of v.

More Methods ...

- adjacentVertices(v)

Return an enumeration of the vertices adjacent to v.

- inAdjacentVertices(v)

Return an enumeration of the vertices adjacent to v along incoming edges.

- outAdjacentVertices(v)

Return an enumeration of the vertices adjacent to v along outgoing edges.

- areAdjacent (v, w)

Return whether vertices v and w are adjacent.

More Methods ...

- endVertices(e)

Return an array of size 2 storing the end vertices of e.

- origin(e)

Return the end vertex from which e leaves.

- destination (e)

Return the end vertex at which e arrives.

- isDirected (e)

Return true iff e is directed.

Update Methods

- makeUndirected(e) Set e to be an undirected edge.
- reverseDirection(e)

Switch the origin and destination vertices of e.

- setDirectionFrom (e, v)

Sets the direction of e away from v, one of its end vertices.

- set DirectionTo (e, v)

Sets the direction of e toward v, one of its end vertices.

Update Methods

- insertEdge (v, w, o)

Insert and return an undirected edge between v and w, storing o at this position.

- insertDirectedEdge(v, w, o)

Insert and return a directed edge between v and w, storing o at this position.

- insertVertex (o)

Insert and return a new (isolated) vertex storing o at this position.

- removeEdge(e)

Remove edge e.

Data Structures For GRAPHS

- Edge list
- Adjacency lists
- Adjacency matrix

- To start with, we store the vertices and the edges into two containers, and each edge object has references to the vertices it connects.

- Additional structures can be used to perform efficiently the methods of the Graph ADT
- The edge list structure simply stores the vertices and the edges into unsorted sequences.
- Easy to implement.
- Finding the edges incident on a given vertex is inefficient since it requires examining the entire edge sequence

	Operation	Time
	size, isEmpty, replaceElement, swap	$\mathrm{O}(1)$
	numVertices, numEdges	$\mathrm{O}(1)$
	vertices	$\mathrm{O}(\mathrm{n})$
	edges, directedEdges, undirectedEdges	$\mathrm{O}(\mathrm{m})$
\cdots	elements, positions	$\mathrm{O}(\mathrm{n}+\mathrm{m})$
$\begin{aligned} & 0 \\ & 000 \\ & \hline \mathbf{E} \end{aligned}$	endVertices, opposite, origin, destination, isDirected	$\mathrm{O}(1)$
	incidentEdges, inIncidentEdges, outIncidentEdges, adjacentVertices, inAdjacentVertices, outAdjacentVertices, areAdjacent, degree, inDegree, outDegree	$\mathrm{O}(\mathrm{m})$
	insertVertex, insertEdge, insertDirectedEdge, removeEdge, makeUndirected, reverseDirection, setDirectionFrom, setDirectionTo	$\mathrm{O}(1)$
	removeVertex	$\mathrm{O}(\mathrm{m})$

- adjacency list of a vertex v :
sequence of vertices adjacent to v
- represent the graph by the adjacency lists of all the vertices

- Space $=\Theta\left(\mathbf{N}+\sum_{\operatorname{deg}}(\mathbf{v})\right)=\Theta(\mathbf{N}+\mathbf{M})$
- The adjacency list structure extends the edge list structure by adding incidence containers to each vertex.

(и.ләрош) 1S!'T Кэиәэ飞!pV

Operation	Time			
size, isEmpty, replaceElement, swap	$\mathrm{O}(1)$			
numVertices, numEdges	$\mathrm{O}(1)$			
vertices	$\mathrm{O}(\mathrm{n})$			
edges, directedEdges, undirectedEdges	$\mathrm{O}(\mathrm{m})$			
elements, positions	$\mathrm{O}(\mathrm{n}+\mathrm{m})$			
endVertices, opposite, origin, destina- tion, isDirected, degree, inDegree, out- Degree	$\mathrm{O}(1)$			
incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v), adjacentVerti- ces(v), inAdjacentVertices(v), outAdja- centVertices(v)	$\mathrm{O}(\operatorname{deg}(\mathrm{v}))$			
areAdjacent(u, v)	$\mathrm{O}(\mathrm{min}(\operatorname{deg}(\mathrm{u})$,			
$\operatorname{deg}(\mathrm{v})))$		$	$	O (1)
:---				
insertVertex, insertEdge, insertDirected- Edge, removeEdge, makeUndirected, reverseDirection,				
removeVertex(v)				

- matrix M with entries for all pairs of vertices
- $M[i, j]=$ true means that there is an edge (i, j) in the graph.
- $M[i, j]=$ false means that there is no edge (i, j) in the graph.
- There is an entry for every possible edge, therefore: Space $=\Theta\left(\mathbf{N}^{2}\right)$
- The adjacency matrix structures augments the edge list structure with a matrix where each row and column corresponds to a vertex.

Adjacency Matrix (modern)

	0	1	2	3	4	5	6
0	\emptyset	\emptyset	$\begin{gathered} \text { NW } \\ 35 \end{gathered}$	\emptyset	$\begin{aligned} & \text { DL } \\ & 247 \end{aligned}$	\emptyset	\emptyset
1	\emptyset	\emptyset	\emptyset	$\begin{gathered} \text { AA } \\ 49 \end{gathered}$	Ø	$\begin{aligned} & \mathrm{DL} \\ & 335 \end{aligned}$	\emptyset
2	\emptyset	$\begin{gathered} \text { AA } \\ 1387 \end{gathered}$	\emptyset	\emptyset	$\begin{aligned} & \text { AA } \\ & 903 \end{aligned}$	Ø	$\begin{gathered} \text { TW } \\ 45 \end{gathered}$
3	\emptyset	Ø	\emptyset	\emptyset	Ø	$\begin{aligned} & \text { UA } \\ & 120 \end{aligned}$	\emptyset
4	\emptyset	$\begin{aligned} & \text { AA } \\ & 523 \end{aligned}$	\emptyset	$\begin{aligned} & \text { AA } \\ & 411 \end{aligned}$	\emptyset	Ø	\emptyset
5	\emptyset	$\begin{aligned} & \text { UA } \\ & 877 \end{aligned}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
6	\emptyset	Ø	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

$\begin{array}{ccccccc}\text { BOS } & \text { DFW } & \text { JFK } & \text { LAX } & \text { MIA } & \text { ORD } & \text { SFO }\end{array}$

- The space requirement is $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{m}\right)$

Performance of the Adjacency Matrix Structure

Operation	Time
size, isEmpty, replaceElement, swap	$\mathrm{O}(1)$
numVertices, numEdges	$\mathrm{O}(1)$
vertices	$\mathrm{O}(\mathrm{n})$
edges, directedEdges, undirectedEdges	$\mathrm{O}(\mathrm{m})$
elements, positions	$\mathrm{O}(\mathrm{n}+\mathrm{m})$
endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree	$\mathrm{O}(1)$
incidentEdges, inIncidentEdges, outInci- dentEdges, adjacentVertices, inAdja- centVertices, outAdjacentVertices,	$\mathrm{O}(\mathrm{n})$
areAdjacent	$\mathrm{O}(1)$
insertEdge, insertDirectedEdge, remov- eEdge, makeUndirected, reverseDirection, setDirectionFrom, setDirectionTo	$\mathrm{O}(1)$
insertVertex, removeVertex	$\mathrm{O}\left(\mathrm{n}^{2}\right)$

Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture 16, March I0, 2016

