Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture I5, March 8, 2016

Alice

Alice and Bob's Adventures in GEOM-land...

GEOMETRIC ALGORITHMS

- segment intersection
- orientation
- point inclusion
- simple closed path

Basic Geometric Objects in the Plane

point: defined by a pair of coordinates (x, y)
segment: portion of a straight line between two points

Basic Geometric Objects in the Plane

polygon: a circular sequence of points (vertices) and segments (edges) between them

Some Geometric Problems

Segment intersection: Given two segments, do they intersect?

Some Geometric Problems

Simple closed path: Given a set of points, find a nonintersecting polygon with vertices on the points.

Some Geometric Problems

Inclusion in polygon: Is a point inside or outside a polygon?

An Apparently Simple Problem: Segment Intersection

- Test whether segments (a,b) and (c,d) intersect. How do we do it?

- We could start by writing down the equations of the lines through the segments, then test whether the lines intersect, then ...
- An alternative (and simpler) approach is based in the notion of orientation of an ordered triplet of points in the plane

Orientation in the Plane

- The orientation of an ordered triplet of points in the plane can be

counterclockwise (left turn)

clockwise (right turn)

collinear (no turn)

Intersection and Orientation

Two segments $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ intersect if and only if one of the following two conditions is verified

- general case:
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right)$ and $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right)$ have different orientations and
- $\left(p_{2}, q_{2}, p_{1}\right)$ and $\left(p_{2}, q_{2}, q_{1}\right)$ have different orientations

Intersection and Orientation

Two segments $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and ($\mathrm{p}_{2}, \mathrm{q}_{2}$) intersect if and only if one of the following two conditions is verified

- special case
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right),\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right),\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{p}_{1}\right)$, and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{q}_{1}\right)$ are all collinear and
- the x-projections of $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ intersect
- the y-projections of $\left(p_{1}, \mathrm{q}_{1}\right)$ and (p_{2}, q_{2}) intersect

Examples (General Case)

- general case:
- $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{p}_{2}\right)$ and $\left(\mathrm{p}_{1}, \mathrm{q}_{1}, \mathrm{q}_{2}\right)$ have different orientations and
- $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{p}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}, \mathrm{q}_{1}\right)$ have different orientations

How to Compute the Orientation

- slope of segment $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right): \sigma=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
- slope of segment $\left(\mathrm{p}_{2}, \mathrm{p}_{3}\right): \tau=\left(y_{3}-y_{2}\right) /\left(x_{3}-x_{2}\right)$

- Orientation test
- counterclockwise (left turn): $\sigma<\tau$
- clockwise (right turn): $\sigma>\tau$
- collinear (left turn): $\sigma=\tau$
- The orientation depends on whether the expression $\left(y_{2}-y_{1}\right)\left(x_{3}-x_{2}\right)-\left(y_{3}-y_{2}\right)\left(x_{2}-x_{1}\right)$ is positive, negative, or zero.

Point Inclusion

- given a polygon and a point, is the point inside or outside the polygon?
- orientation helps solving this problem in linear time

Point Inclusion - Part II

- Draw a horizontal line to the right of each point and extend it to infinity
- Count the number of times a line intersects the polygon. We have:
- even number \Rightarrow point is outside
- odd number \Rightarrow point is inside
- Why?

- What about points d and g ?? Degeneracy!

Degeneracy

- Degeneracies are input configurations that involve tricky special cases.
- When implementing an algorithm, degeneracies should be taken care of separately -- the general algorithm might fail to work.
- For example, in the previous example where we had to determine whether two segments intersect, we have degeneracy if two segments are collinear.

- The general algorithm of checking for orientation would fail to distinguish whether the two segments intersect. Hence, this case should be dealt with separately.

Simple Closed Path - Part I

- Problem: Given a set of points ...
- "Connect the dots" without crossings

Simple Closed Path - Part II

- Pick the bottommost point a as the anchor point

- For each point p, compute the angle $\theta(p)$ of the segment (a,p) with respect to the x -axis:

Simple Closed Path - Part III

- Traversing the points by increasing angle yields a simple closed path:

- The question is: how do we compute angles?
- We could use trigonometry (e.g., arctan).
- However, the computation would be inefficient since trigonometric functions are not in the normal instruction set of a computer and need a call to a math-library routine.
- Observation:, we don't care about the actual values of the angles. We just want to sort by angle.
- Idea: use orientation to compare angles without actually computing them!!

Simple Closed Path - Part IV

- Orientation can be used to compare angles without actually computing them ... Cool!

$\theta(\mathrm{p})<\theta(\mathrm{q}) \Leftrightarrow$ orientation of $(\mathrm{a}, \mathrm{p}, \mathrm{q})$ is counterclockwise
- We can sort the points by angle by using any "sorting-by-comparison" algorithm (e.g., heapsort or merge-sort) and replacing angle comparisons with orientation tests
- We obtain an $\mathrm{O}(\mathrm{N} \log \mathrm{N})$-time algorithm for the simple closed path problem on N points

Convex HULL

- Convexivity
- Package-Wrap Algorithm - Graham Scan

What is the Convex Hull?

Let \boldsymbol{S} be a set of points in the plane.
Intuition: Imagine the points of S as being pegs; the convex hull of S is the shape of a rub-ber-band stretched around the pegs.

Formal definition: the convex hull of S is the smallest convex polygon that contains all the points of S

Convexity

You know what convex means, right?
A polygon P is said to be convex if:

1. P is non-intersecting; and
2. for any two points \boldsymbol{p} and \boldsymbol{q} on the boundary of \boldsymbol{P}, segment $\boldsymbol{p q}$ lies entirely inside \boldsymbol{P}

Eh? What's convex?

Why Convex Hulls?

The Package Wrapping Algorithm

Package Wrap

- given the current point, how do we compute the next point?
- set up an orientation tournament using the current point as the anchor-point...
- the next point is selected as the point that beats all other points at CCW orientation, i.e., for any other point, we have

$$
\operatorname{orientation}(\mathrm{c}, \mathrm{p}, \mathrm{q})=\mathrm{CCW}
$$

Time Complexity of Package Wrap

- For every point on the hull we examine all the other points to determine the next point
- Notation:
- N : number of points
- M : number of hull points $(M \leq N)$
- Time complexity:
- $\Theta(M N)$
- Worst case: $\Theta\left(N^{2}\right)$
- all the points are on the hull $(M=N)$
- Average case: $\Theta(N \log N)-\Theta\left(N^{4 / 3}\right)$
- for points randomly distributed inside a square, $M=\Theta(\log N)$ on average
- for points randomly distributed inside a circle, $M=\Theta\left(N^{1 / 3}\right)$ on average

Package Wrap has worst-case time complexity $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Which is bad...

Graham Scan

- Form a simple polygon (connect the dots as before)

- Remove points at concave angles

Graham Scan

 How Does it Work?

 How Does it Work?}

Start with the lowest point (anchor point)

Graham Scan: Phase 1

Now, form a closed simple path traversing the points by increasing angle with respect to the anchor point

Graham Scan: Phase 2

The anchor point and the next point on the path must be on the hull (why?)

Graham Scan: Phase 2

- keep the path and the hull points in two sequences
- elements are removed from the beginning of the path sequence and are inserted and deleted from the end of the hull sequence
- orientation is used to decide whether to accept or reject the next point

Discard c

Time Complexity of Graham Scan

- Phase 1 takes time $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- points are sorted by angle around the anchor
- Phase 2 takes time $\mathrm{O}(\mathrm{N})$
- each point is inserted into the sequence exactly once, and
- each point is removed from the sequence at most once
- Total time complexity $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture I5, March 8, 2016

