Winter 2016 COMP-250: Introduction to Computer Science

Lecture 15, March 8, 2016

Alice and Bob's Adventures in GEOM-land...

Bob

GEOMETRIC ALGORITHMS

- segment intersection
- orientation
- point inclusion
- simple closed path

Basic Geometric Objects in the Plane

point: defined by a pair of coordinates (x,y)

segment: portion of a straight line between two points

Basic Geometric Objects in the Plane

polygon: a circular sequence of points (vertices) and segments (edges) between them

Some Geometric Problems

Segment intersection: Given two segments, do they intersect?

Some Geometric Problems

Simple closed path: Given a set of points, find a nonintersecting polygon with vertices on the points.

Some Geometric Problems

Inclusion in polygon: Is a point inside or outside a polygon?

An Apparently Simple Problem: Segment Intersection

• Test whether segments (a,b) and (c,d) intersect. *How do we do it?*

- We could start by writing down the equations of the lines through the segments, then test whether the lines intersect, then ...
- An alternative (and simpler) approach is based in the notion of **orientation** of an ordered triplet of points in the plane

Orientation in the Plane

• The orientation of an ordered triplet of points in the plane can be

counterclockwise (left turn)

clockwise (right turn)

collinear (no turn)

Intersection and Orientation

Two segments (p_1,q_1) and (p_2,q_2) intersect if and only if one of the following two conditions is verified

- general case:
 - (p_1,q_1,p_2) and (p_1,q_1,q_2) have different orientations **and**
 - (p_2,q_2,p_1) and (p_2,q_2,q_1) have different orientations

Intersection and Orientation

Two segments (p_1,q_1) and (p_2,q_2) intersect if and only if one of the following two conditions is verified

- special case
 - $(p_1,q_1,p_2), (p_1,q_1,q_2), (p_2,q_2,p_1), and (p_2,q_2,q_1)$ are all collinear **and**
 - the x-projections of (p_1,q_1) and (p_2,q_2) intersect
 - the y-projections of (p_1,q_1) and (p_2,q_2) intersect

 (p_1,q_1,p_2) (p_1,q_1,q_2) (p_2,q_2,p_1) (p_2,q_2,q_1)

Examples (General Case)

- general case:
 - (p_1,q_1,p_2) and (p_1,q_1,q_2) have different orientations **and**
 - (p_2,q_2,p_1) and (p_2,q_2,q_1) have different orientations

How to Compute the Orientation

• slope of segment (p_1, p_2) : $\sigma = (y_2 - y_1) / (x_2 - x_1)$

• slope of segment (p_2, p_3) : $\tau = (y_3 - y_2) / (x_3 - x_2)$

- Orientation test
 - counterclockwise (left turn): $\sigma < \tau$
 - clockwise (right turn): $\sigma > \tau$
 - collinear (left turn): $\sigma = \tau$
- The orientation depends on whether the expression $(y_2-y_1)(x_3-x_2) (y_3-y_2)(x_2-x_1)$ is positive, negative, or zero.

Point Inclusion

- given a polygon and a point, is the point inside or outside the polygon?
- orientation helps solving this problem in linear time

Point Inclusion — Part II

- Draw a horizontal line to the right of each point and extend it to infinity
- Count the number of times a line intersects the polygon. We have:
 - even number \Rightarrow point is outside
 - odd number \Rightarrow point is inside
- Why?

• What about points d and g ?? Degeneracy!

Degeneracy

- Degeneracies are input configurations that involve tricky special cases.
- When implementing an algorithm, degeneracies should be taken care of separately -- the general algorithm might fail to work.
- For example, in the previous example where we had to determine whether two segments intersect, we have degeneracy if two segments are collinear.

 $p_2 q_1 q_2$ $p_1 q_1$

• The general algorithm of checking for orientation would fail to distinguish whether the two segments intersect. Hence, this case should be dealt with separately.

Simple Closed Path — Part I

• Problem: Given a set of points ...

• "Connect the dots" without crossings

Simple Closed Path — Part II

• Pick the bottommost point a as the anchor point

For each point p, compute the angle θ(p) of the segment (a,p) with respect to the x-axis:

Simple Closed Path — Part III

• Traversing the points by increasing angle yields a simple closed path:

- The question is: how do we compute angles?
 - We could use trigonometry (e.g., arctan).
 - However, the computation would be inefficient since trigonometric functions are not in the normal instruction set of a computer and need a call to a math-library routine.
 - Observation:, we don't care about the actual values of the angles. We just want to sort by angle.
 - Idea: use orientation to compare angles without actually computing them!!

Simple Closed Path — Part IV

• Orientation can be used to compare angles without actually computing them ... Cool!

 $\theta(p) < \theta(q) \Leftrightarrow \text{ orientation of } (a,p,q) \text{ is counterclockwise}$

- We can sort the points by angle by using any "sorting-by-comparison" algorithm (e.g., heapsort or merge-sort) and replacing angle comparisons with orientation tests
- We obtain an O(N log N)-time algorithm for the simple closed path problem on N points

Convex HULL

- Convexivity
- Package-Wrap Algorithm
- Graham Scan

What is the Convex Hull?

Let **S** be a set of points in the plane.

Intuition: Imagine the points of **S** as being pegs; the *convex hull* of **S** is the shape of a rubber-band stretched around the pegs.

Formal definition: the *convex hull* of S is the smallest convex polygon that contains all the points of S

Convexity

You know what *convex* means, right?

A polygon **P** is said to be *convex* if:

- 1. **P** is non-intersecting; and
- 2. for any two points *p* and *q* on the boundary of *P*, segment *pq* lies entirely inside *P*

Why Convex Hulls?

The Package Wrapping Algorithm

Package Wrap

- given the current point, how do we compute the next point?
- set up an orientation tournament using the current point as the anchor-point...
- the next point is selected as the point that beats all other points at CCW orientation, i.e., for any other point, we have

orientation(c, p, q) = CCW

Time Complexity of Package Wrap

- For every point on the hull we examine all the other points to determine the next point
- Notation:
 - N: number of points
 - *M*: number of hull points ($M \le N$)
- Time complexity:
 - $\Theta(MN)$
- Worst case: $\Theta(N^2)$
 - all the points are on the hull (*M*=*N*)
- Average case: $\Theta(N \log N) \Theta(N^{4/3})$
 - for points randomly distributed inside a *square*, $M = \Theta(\log N)$ on average
 - for points randomly distributed inside a *circle*, $M = \Theta(N^{1/3})$ on average

Package Wrap has worst-case time complexity $O(N^2)$

Which is bad...

Graham Scan

• Form a simple polygon (connect the dots as before)

• Remove points at concave angles

Graham Scan How Does it Work?

Start with the lowest point (anchor point)

Graham Scan: Phase 1

Now, form a closed simple path traversing the points by increasing angle with respect to the anchor point

Graham Scan: Phase 2

The anchor point and the next point on the path must be on the hull (why?)

Graham Scan: Phase 2

- keep the path and the hull points in two sequences
- elements are removed from the beginning of the path sequence and are inserted and deleted from the end of the hull sequence
- orientation is used to decide whether to accept or reject the next point

Discard c

Time Complexity of Graham Scan

- Phase 1 takes time O(N logN)
 - points are sorted by angle around the anchor
- Phase 2 takes time O(N)
 - each point is inserted into the sequence exactly once, and
 - each point is removed from the sequence at most once
- Total time complexity O(N log N)

Winter 2016 COMP-250: Introduction to Computer Science

Lecture 15, March 8, 2016