
Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 12, February 18, 2016

Master Theorem
(CLRS 4.3)

a = (constant) number of sub-instances,
b = (constant) size ration of sub-instances,
𝑓(n) = time used for dividing and recombining.

Master Theorem

a = (constant) number of sub-instances,
b = (constant) size ration of sub-instances,
𝑓(n) = time used for dividing and recombining.

Master Theorem

T(n/b2)

. . .
T(n / bk)

f(n)

af(n/b)

a2 f(n/b2)

ak f(n/bk)

alogb n T(2) = T(2) nlogb a

. . .

 T(n)

T(n/b)

T(n/b2) T(n/b2)

T(2)

T(n/b2)

T(n/b)

T(n/b2) T(n/b2)T(n/b2)

T(n/b)

T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / bk)

. . .

T(n / bk)T(n / bk) T(n / bk)T(n / bk)T(n / bk)T(n / bk)T(n / bk)

logbn
. . .

T(n) = ∑ ak f(n/bk)

Proof by recursion tree

Solution: T(n) is 𝛩(𝑓(n))

Solution: T(n) is 𝛩(nlogb a)

isCase 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

Solution: T(n) is 𝛩(nlogb a logk+1 n)
Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

isCase 1: 𝑓(n) is O(nL) for some constant L < logb a.

Solution: T(n) is 𝛩(nlogb a)

Master Theorem

isCase 1: 𝑓(n) is O(nL) for some constant L < logb a.

Solution: T(n) is 𝛩(nlogb a)

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Compare nlog2 5 vs. n2.

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Compare nlog2 5 vs. n2.

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Compare nlog2 5 vs. n2.

Since 2 < log2 5 use Case 1

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Compare nlog2 5 vs. n2.

Since 2 < log2 5 use Case 1

Master Theorem

Solution: T(n) is 𝛩(nlogb a)

Case 1: 𝑓(n) is O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Compare nlog2 5 vs. n2.

Since 2 < log2 5 use Case 1
Solution: T(n) is 𝛩(nlog2 5)

Master Theorem

Solution: T(n) is 𝛩(nlogb a log n)

Simple Case 2: 𝑓(n) is 𝛩(nlogb a).

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3 log n)

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3 log n)

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3 log n)

Compare nlog3 27 vs. n3.

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3 log n)

Compare nlog3 27 vs. n3.

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3 log n)

Compare nlog3 27 vs. n3.

Since 3 = log3 27 use Case 2

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3 log n)

Compare nlog3 27 vs. n3.

Since 3 = log3 27 use Case 2

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3 log n)

Compare nlog3 27 vs. n3.

Since 3 = log3 27 use Case 2
Solution: T(n) is 𝛩(n3 log2 n)

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

is

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)
Compare nlog2 5 vs. n3.

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)
Compare nlog2 5 vs. n3.

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)
Compare nlog2 5 vs. n3.
Since 3 > log2 5 use Case 3

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)
Compare nlog2 5 vs. n3.
Since 3 > log2 5 use Case 3

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)
Compare nlog2 5 vs. n3.
Since 3 > log2 5 use Case 3
a𝑓(n/b) = 5(n/2)3 = 5/8 n3 ≤ cn3, for c = 5/8

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)
Compare nlog2 5 vs. n3.
Since 3 > log2 5 use Case 3
a𝑓(n/b) = 5(n/2)3 = 5/8 n3 ≤ cn3, for c = 5/8

Master Theorem

Solution: T(n) is 𝛩(𝑓(n))

Case 3: 𝑓(n) is 𝛺(nL) for some constant L > logb a
and 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)
Compare nlog2 5 vs. n3.
Since 3 > log2 5 use Case 3
a𝑓(n/b) = 5(n/2)3 = 5/8 n3 ≤ cn3, for c = 5/8
Solution: T(n) is 𝛩(n3)

Master Theorem

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)
Compare nlog3 27 vs. n3.

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)
Compare nlog3 27 vs. n3.

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)
Compare nlog3 27 vs. n3.
Since 3 = log3 27 use Case 2

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)
Compare nlog3 27 vs. n3.
Since 3 = log3 27 use Case 2

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)
Compare nlog3 27 vs. n3.
Since 3 = log3 27 use Case 2
but n3/log n is not 𝛩(n3 log k n) for k ≥ 0

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = 27T(n/3) + 𝛩(n3/log n)
Compare nlog3 27 vs. n3.
Since 3 = log3 27 use Case 2
but n3/log n is not 𝛩(n3 log k n) for k ≥ 0

Master Theorem

Solution: T(n) is 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) is 𝛩(nlogb a logk n), for some k ≥ 0.

Cannot use Master Method.

Divide-and-Conquer
Paradigm

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
■ Straightforward: n2.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
■ Straightforward: n2.
■ Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Divide-and-Conquer

Divide-and-Conquer:
Binary Search

Find a value v in a
sorted array of elements.

[a0 ≤ a1 ≤,…,≤ aSize-1]

Size = number of elements.

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Binary Search

Def. T(n) = number of comparisons to find v among n sorted elements.

Binary Search recurrence.

Solution. T(n) is O(log n) (Master Theorem Case 2).

Recurrence Relation

 1 if n = 1
T(n) =
 T(n/2) + 1 if n > 1

{

Divide-and-Conquer
Multiplication

1

0

0

1

1

0

1

1

1

0

1

1

1

0

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

×

Multiply

Multiply. Given two n-digit integers a and b, compute a × b.
■ Grade School solution: Θ(n2) bit operations.

10101011 0

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Integer Multiplication

Add. Given two n-digit integers a and b, compute a + b.
■ Θ(n) bit operations.

1

0

0

1

1

0

1

1

1

0

1

1

1

0

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

×

Multiply

Multiply. Given two n-digit integers a and b, compute a × b.
■ Grade School solution: Θ(n2) bit operations.

10101011 0

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Integer Multiplication

To multiply two n-digit integers:
■ Multiply four n/2-digit integers.
■ Add two n/2-digit integers, and shift to obtain result.

assumes n is a power of 2

is

D&C Multiplication

assumes n is a power of 2

is

Telescoping Proof

Claim.

assumes n is a power of 2

is

Telescoping Proof

Claim.

assumes n is a power of 2

is

Telescoping Proof

Claim.

assumes n is a power of 2

is

Telescoping Proof

Claim.

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [2 T(n/4)/(n/4) + C] + C

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [2 T(n/4)/(n/4) + C] + C
= 4 T(n/4)/(n/4) + 2C + C

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [2 T(n/4)/(n/4) + C] + C
= 4 T(n/4)/(n/4) + 2C + C
= 4 [2 T(n/8)/(n/8) + C] + 2C + C

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [2 T(n/4)/(n/4) + C] + C
= 4 T(n/4)/(n/4) + 2C + C
= 4 [2 T(n/8)/(n/8) + C] + 2C + C
= 8 T(n/8)/(n/8) + 4C + 2C + C

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [2 T(n/4)/(n/4) + C] + C
= 4 T(n/4)/(n/4) + 2C + C
= 4 [2 T(n/8)/(n/8) + C] + 2C + C
= 8 T(n/8)/(n/8) + 4C + 2C + C
...

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [2 T(n/4)/(n/4) + C] + C
= 4 T(n/4)/(n/4) + 2C + C
= 4 [2 T(n/8)/(n/8) + C] + 2C + C
= 8 T(n/8)/(n/8) + 4C + 2C + C
...
= n T(1)/1 + n/2 C + n/4 C + ... + 4C + 2C + C

assumes n is a power of 2

is

Telescoping Proof

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [2 T(n/4)/(n/4) + C] + C
= 4 T(n/4)/(n/4) + 2C + C
= 4 [2 T(n/8)/(n/8) + C] + 2C + C
= 8 T(n/8)/(n/8) + 4C + 2C + C
...
= n T(1)/1 + n/2 C + n/4 C + ... + 4C + 2C + C
= C (n/2+n/4+...+2+1) = C(n-1).

assumes n is a power of 2

is

Telescoping Proof

To multiply two n-digit integers:
■ Add two n/2 digit integers.
■ Multiply three n/2-digit integers.
■ Add, subtract, and shift n/2-digit integers to obtain result.

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in
O(n1.585) bit operations.

is is

Karatsuba Multiplication

n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

 T(n)

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

n

Karatsuba Recursion Tree

Generalization: O(n1+ε) for any ε > 0.

Best known: n log n 2O(log* n)

Conjecture: Ω(n log n) but not proven yet.

 0 if x≤1
where log*(x)=
 1+log*(log x) if x>1

Karatsuba Multiplication

{

Winter 2016
COMP-250: Introduction 

to Computer Science
Lecture 12, February 18, 2016

