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Master Theorem
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𝑓(n) = time used for dividing and recombining.    
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Case 1: 𝑓(n) is O(nL) for some constant L < logb a.    
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Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
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Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
■ Straightforward: n2.
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Divide-and-conquer.
■ Break up problem into several parts.
■ Solve each part recursively.
■ Combine solutions to sub-problems into overall solution.

Most common usage.
■ Break up problem of size n into two equal parts of size n/2.
■ Solve two parts recursively.
■ Combine two solutions into overall solution in linear time.

Consequence.
■ Straightforward: n2.
■ Divide-and-conquer: n log n.

Divide et impera. 
Veni, vidi, vici. 
        - Julius Caesar

Divide-and-Conquer



Divide-and-Conquer:
Binary Search



Find a value v in a 
sorted array of elements. 

[a0 ≤ a1 ≤,…,≤ aSize-1] 

Size = number of elements.

Binary Search
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Binary Search



Def.  T(n)  = number of comparisons to find v among n sorted elements.

Binary Search recurrence.  

Solution.  T(n) is O(log n) (Master Theorem Case 2). 

Recurrence Relation

                  1                       if n = 1 
T(n)  = 
                  T(n/2) + 1         if n > 1

{ 
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Multiply

Multiply.  Given two n-digit integers a and b, compute a × b.
■ Grade School solution: Θ(n2) bit operations.
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Integer Multiplication



Add.  Given two n-digit integers a and b, compute a + b.
■ Θ(n) bit operations.
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Multiply.  Given two n-digit integers a and b, compute a × b.
■ Grade School solution: Θ(n2) bit operations.
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Integer Multiplication



To multiply two n-digit integers: 
■ Multiply four n/2-digit integers.
■ Add two n/2-digit integers, and shift to obtain result.

assumes n is a power of 2
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D&C Multiplication
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= 4 T(n/4)/(n/4) + 2C + C
= 4 [ 2 T(n/8)/(n/8) + C ] + 2C + C
= 8 T(n/8)/(n/8) + 4C + 2C + C
...
= n T(1)/1 + n/2 C + n/4 C + ... + 4C + 2C + C

assumes n is a power of 2

is

Telescoping Proof



Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C
= 2 T(n/2)/(n/2) + C
= 2 [ 2 T(n/4)/(n/4) + C ] + C
= 4 T(n/4)/(n/4) + 2C + C
= 4 [ 2 T(n/8)/(n/8) + C ] + 2C + C
= 8 T(n/8)/(n/8) + 4C + 2C + C
...
= n T(1)/1 + n/2 C + n/4 C + ... + 4C + 2C + C
= C (n/2+n/4+...+2+1) = C(n-1).

assumes n is a power of 2

is

Telescoping Proof



To multiply two n-digit integers: 
■ Add two n/2 digit integers.
■ Multiply three n/2-digit integers.
■ Add, subtract, and shift n/2-digit integers to obtain result.

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit integers in 
O(n1.585) bit operations.

is is

Karatsuba Multiplication



n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

 T(n) 

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

n

Karatsuba Recursion Tree



Generalization:  O(n1+ε) for any ε > 0.

Best known:  n log n 2O(log* n)

Conjecture:  Ω(n log n) but not proven yet.

                          0                    if x≤1
where log*(x)=
                          1+log*(log x)   if x>1

Karatsuba Multiplication

{ 
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