Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture I2, February I8, 2016

Master Theorem (CLRS 4.3)

Master Theorem

Used for many divide-and-conquer recurrences
$T(n)=a T(n / b)+f(n)$,
where $a \geq 1, b>1$, and $f(n)>0$.
$a=$ (constant) number of sub-instances,
$b=$ (constant) size ration of sub-instances,
$f(\mathrm{n})=$ time used for dividing and recombining.

Master Theorem

Used for many divide-and-conquer recurrences
$T(n)=a T(n / b)+f(n)$,
where $a \geq 1, b>1$, and $f(n)>0$.
$a=$ (constant) number of sub-instances, $b=$ (constant) size ration of sub-instances,
$f(\mathrm{n})=$ time used for dividing and recombining.

Based on the master theorem (Theorem 4.1).

Compare $n^{\log _{b} a}$ vs. $f(n)$:

Proof by recursion tree

$$
T(n)=a T(n / b)+f(n)
$$

$$
T(n)=\sum a^{k} f\left(n / b^{k}\right)
$$

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$
and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.
Solution: $T(n)$ is $\Theta(f(n))$

Master Theorem

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& \text { where } a \geq 1, b>1, \text { and } f(n)>0
\end{aligned}
$$

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
(Intuitively: cost is dominated by leaves.)

Master Theorem

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& \text { where } a \geq 1, b>1, \text { and } f(n)>0
\end{aligned}
$$

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$. ($f(n)$ is polynomially smaller than $n^{\log _{b} a}$.)

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

(Intuitively: cost is dominated by leaves.)

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

$$
T(n)=5 T(n / 2)+\Theta\left(n^{2}\right)
$$

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

$$
T(n)=5 T(n / 2)+\Theta\left(n^{2}\right)
$$

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

$$
\begin{aligned}
& T(n)=5 T(n / 2)+\Theta\left(n^{2}\right) \\
& \text { Compare } n^{\log _{2} 5} \text { vs. } n^{2} .
\end{aligned}
$$

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

$$
\begin{aligned}
& T(n)=5 T(n / 2)+\Theta\left(n^{2}\right) \\
& \text { Compare } n^{\log _{2} 5} \text { vs. } n^{2} .
\end{aligned}
$$

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
$T(n)=5 T(n / 2)+\Theta\left(n^{2}\right)$
Compare $n^{\log _{2} 5}$ vs. n^{2}.
Since $2<\log _{2} 5$ use Case 1

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
$T(n)=5 T(n / 2)+\Theta\left(n^{2}\right)$
Compare $n^{\log _{2} 5}$ vs. n^{2}.
Since $2<\log _{2} 5$ use Case 1

Master Theorem

Case 1: $f(n)$ is $O\left(n^{L}\right)$ for some constant $L<\log _{b} a$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$

$$
T(n)=5 T(n / 2)+\Theta\left(n^{2}\right)
$$

Compare $n^{\log _{2} 5}$ vs. n^{2}.
Since $2<\log _{2} 5$ use Case 1
Solution: $T(n)$ is $\Theta\left(n^{\log _{2} 5}\right)$

Master Theorem

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& \text { where } a \geq 1, b>1, \text { and } f(n)>0
\end{aligned}
$$

Simple Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a}\right)$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log n\right)$

Master Theorem

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& \text { where } a \geq 1, b>1, \text { and } f(n)>0
\end{aligned}
$$

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

(Intuitively: cost is $n^{\log _{b} a} \lg ^{k} n$ at each level, and there are $\Theta(\lg n)$ levels.)

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
T(n)=27 T(n / 3)+\Theta\left(n^{3} \log n\right)
$$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
T(n)=27 T(n / 3)+\Theta\left(n^{3} \log n\right)
$$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
T(n)=27 T(n / 3)+\Theta\left(n^{3} \log n\right)
$$

Compare $n^{\log _{3} 27}$ vs. n^{3}.

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
T(n)=27 T(n / 3)+\Theta\left(n^{3} \log n\right)
$$

Compare $n^{\log _{3} 27}$ vs. n^{3}.

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2
Solution: $T(n)$ is $\Theta\left(n^{3} \log ^{2} n\right)$

Master Theorem

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& \text { where } a \geq 1, b>1, \text { and } f(n)>0
\end{aligned}
$$

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$

 and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n. ($f(n)$ is polynomially greater than $n^{\log _{b} a}$.)
Solution: $T(n)$ is $\Theta(f(n))$

(Intuitively: cost is dominated by root.)

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$
and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n. Solution: $T(n)$ is $\Theta(f(n))$

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$

 and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n. Solution: $T(n)$ is $\Theta(f(n))$What's with the Case 3 regularity condition?

- Generally not a problem.
- It always holds whenever $f(n)=n^{k}$ and $f(n)$ is $\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for constant $\epsilon>0$.

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$

and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n. Solution: $T(n)$ is $\Theta(f(n))$

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$

and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.

Solution: $T(n)$ is $\Theta(f(n))$

$$
T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)
$$

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$

and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.

Solution: $T(n)$ is $\Theta(f(n))$

$$
T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)
$$

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$

and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n. Solution: $T(n)$ is $\Theta(f(n))$

$$
T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)
$$

Compare $n^{\log _{2} 5}$ vs. n^{3}.

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$

and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n. Solution: $T(n)$ is $\Theta(f(n))$

$$
T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)
$$

Compare $n^{\log _{2} 5}$ vs. n^{3}.

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$
and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.

Solution: $T(n)$ is $\Theta(f(n))$

$T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)$
Compare $n^{\log _{2} 5}$ vs. n^{3}.
Since $3>\log _{2} 5$ use Case 3

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$
and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.

Solution: $T(n)$ is $\Theta(f(n))$

$T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)$
Compare $n^{\log _{2} 5}$ vs. n^{3}.
Since $3>\log _{2} 5$ use Case 3

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$
and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.

Solution: $T(n)$ is $\Theta(f(n))$

$T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)$
Compare $n^{\log _{2} 5}$ vs. n^{3}.
Since $3>\log _{2} 5$ use Case 3
$a f(n / b)=5(n / 2)^{3}=5 / 8 n^{3} \leq c n^{3}$, for $c=5 / 8$

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$
and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.

Solution: $T(n)$ is $\Theta(f(n))$

$T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)$
Compare $n^{\log _{2} 5}$ vs. n^{3}.
Since $3>\log _{2} 5$ use Case 3
$a f(n / b)=5(n / 2)^{3}=5 / 8 n^{3} \leq c n^{3}$, for $c=5 / 8$

Master Theorem

Case 3: $f(n)$ is $\Omega\left(n^{L}\right)$ for some constant $L>\log _{b} a$
and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some $c<1$ and all large n.

Solution: $T(n)$ is $\Theta(f(n))$

$T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)$
Compare $n^{\log _{2} 5}$ vs. n^{3}.
Since $3>\log _{2} 5$ use Case 3
$a f(n / b)=5(n / 2)^{3}=5 / 8 n^{3} \leq c n^{3}$, for $c=5 / 8$
Solution: $T(n)$ is $\Theta\left(n^{3}\right)$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right)
$$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right)
$$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
\begin{aligned}
& T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right) \\
& \text { Compare } n^{\log _{3} 27} \text { vs. } n^{3} .
\end{aligned}
$$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$

$$
\begin{aligned}
& T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right) \\
& \text { Compare } n^{\log _{3} 27} \text { vs. } n^{3} .
\end{aligned}
$$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.

Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2
but $n^{3} / \log n$ is not $\Theta\left(n^{3} \log { }^{k} n\right)$ for $\mathrm{k} \geq 0$

Master Theorem

Case 2: $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, for some $k \geq 0$.
Solution: $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$T(n)=27 T(n / 3)+\Theta\left(n^{3} / \log n\right)$
Compare $n^{\log _{3} 27}$ vs. n^{3}.
Since $3=\log _{3} 27$ use Case 2
but $n^{3} / \log n$ is not $\Theta\left(n^{3} \log { }^{k} n\right)$ for $\mathrm{k} \geq 0$
Cannot use Master Method.

Divide-and-Conquer Paradigm

Divide-and-Conquer

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Straightforward: n^{2}.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\mathrm{n} / 2$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Straightforward: n^{2}.
- Divide-and-conquer: $\mathrm{n} \log \mathrm{n}$.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

Divide-and-Conquer: Binary Search

Binary Search

Find a value v in a sorted array of elements.

$\left[\mathrm{a}_{0} \leq \mathrm{a}_{1} \leq, \ldots, \mathrm{a}_{\text {Size-1 }}\right]$

Size $=$ number of elements.

Binary Search

Algorithm: binarySearch $(a, v$, low, high $)$

Input: array a, value v, lower and upper bound indices low, high (low $=0$, high $=n-1$ initially $)$ Output: the index i of element v (if it is present), -1 (if v is not present)

```
if low == high then
    if }a[low]==v then
        return low
    else
        return -1
    end if
else
    mid}\leftarrow(low+high)/
    if v\leqa[mid] then
        return binarySearch(a,v,low,mid )
    else
        return binarySearch(a,v,mid + 1, high)
    end if
end if
```

0	0000	L	L				
1	0001						
2	0010						
3	0011						
4	0100			L	L		
$*$	5	0101				H	L=H
6	0110						
7	0111		H	H			
8	1000						
9	1001						
10	1010						
11	1011						
12	1100						
13	1101						
14	1110						
15	1111	H					

0	0000	L	L			
1	0001					
2	0010					
3	0011					
4	0100			L	L	
- 5	0101				H	L=H
6	0110					
7	0111		H	H		
8	1000					
9	1001					
10	1010					
11	1011					
12	1100					
13	1101					
14	1110					
15	1111	H				

0	0000	L	L				
1	0001						
2	0010						
3	0011						
4	0100			L	L		
$*$	5	0101				H	L=H
6	0110						
7	0111		H	H			
8	1000						
9	1001						
10	1010						
11	1011						
12	1100						
13	1101						
14	1110						
15	1111	H					

0	0000	L L			
1	0001				
2	0010				
3	0011				
4	0100		L	L	
5	0101			H	L=H
6	0110				
7	0111	H	H		
8	1000				
9	1001				
10	1010				
11	1011				
12	1100				
13	1101				
14	1110				
15	1111	H			

0	0000	L	L				
1	0001						
2	0010						
3	0011						
4	0100			L	L		
$*$	5	0101				H	L=H
6	0110						
7	0111		H	H			
8	1000						
9	1001						
10	1010						
11	1011						
12	1100						
13	1101						
14	1110						
15	1111	H					

0	0000	L	L				
1	0001						
2	0010						
3	0011						
4	0100			L	L		
$*$	5	0101				H	L=H
6	0110						
7	0111		H	H			
8	1000						
9	1001						
10	1010						
11	1011						
12	1100						
13	1101						
14	1110						
15	1111	H					

```
00000 L L
10001
20010
30011
40100
\(* \quad 50101\)
60110
700111 H H
81000
91001
101010
111011
121100
131101
141110
\(15 \quad 1111\) H
```

0	0000	L	L				
1	0001						
2	0010						
3	0011						
4	0100			L	L		
$*$	5	0101				H	L=H
6	0110						
7	0111		H	H			
8	1000						
9	1001						
10	1010						
11	1011						
12	1100						
13	1101						
14	1110						
15	1111	H					

```
00000 L L
10001
20010
30011
40100
\(\times \quad 50101\)
60110
700111 H H
81000
91001
101010
111011
121100
131101
141110
151111 H
```

0	0000	L	L				
1	0001						
2	0010						
3	0011						
4	0100			L	L		
$*$	5	0101				H	L=H
6	0110						
7	0111		H	H			
8	1000						
9	1001						
10	1010						
11	1011						
12	1100						
13	1101						
14	1110						
15	1111	H					

Binary Search

0	L			
1				
2				
3		L	L	
$*$				H
4	$\mathrm{~L}=\mathrm{H}$			

Binary Search

Binary Search

0	L			
1				
2				
3		L	L	
$*$				H
4	$\mathrm{~L}=\mathrm{H}$			

Binary Search

Binary Search

0	L			
1				
2				
3		L	L	
$*$				H
4	$\mathrm{~L}=\mathrm{H}$			

Binary Search

Binary Search

0	L			
1				
2				
3		L	L	
$*$				H
4	$\mathrm{~L}=\mathrm{H}$			

Binary Search

0	L			
1				
2				
3		L	L	
2			H	$L=H$

Binary Search

0	L			
1				
2				
3		L	L	
$*$				H
4	$\mathrm{~L}=\mathrm{H}$			

Recurrence Relation

Def. $T(n)=$ number of comparisons to find v among n sorted elements.
Binary Search recurrence.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ \mathrm{~T}(n / 2)+1 & \text { if } n>1\end{cases}
$$

Solution. $T(n)$ is $O(\log n)$ (Master Theorem Case 2).

Divide-and-Conquer Multiplication

Integer Multiplication

$\begin{array}{lllllllll}1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
Multiply. Given two n -digit integers a and b , compute $\mathrm{a} \times \mathrm{b}$.

- Grade School solution: $\Theta\left(\mathrm{n}^{2}\right)$ bit operations.

1	1	1	1	0	1			
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

Multiply							0		0		0	0	0	0
					1	1	0	1	0	1	1	0	1	0
					1	0	1	0	1	0	0	1	0	
			1		0	1	0	1	0	1	1			
		1			1	0	1	0	1	0	0			
	1	1			0	1	0	1	0					
0	0	0			0	0	0	0						
01		0	1		0	0	0	0	0	0	0	0	0	0

Integer Multiplication

Add. Given two n -digit integers a and b , compute $\mathrm{a}+\mathrm{b}$.

- $\Theta(\mathrm{n})$ bit operations.

$$
1101101010
$$

Multiply. Given two n -digit integers a and b , compute $\mathrm{a} \times \mathrm{b}$.

- Grade School solution: $\Theta\left(n^{2}\right)$ bit operations.

\times	0	1	1	1	1	0	1	
1	1	0	1	0	1	0	1	0

$\left.\begin{array}{lllllllllllll}\text { Multiply } & & & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

D\&C Multiplication

To multiply two n -digit integers:

- Multiply four $\mathrm{n} / 2$-digit integers.
- Add two $n / 2$-digit integers, and shift to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right)=2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n) \text { is } \Theta\left(n^{2}\right)
$$

Telescoping Proof

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n) \text { is } \Theta\left(n^{2}\right)
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\begin{array}{c}
\text { assumes } n \\
\text { a is a power of } 2
\end{array}
\end{gathered}
$$

Pf. For $n>1: \quad T(n) / n=4 T(n / 2) / n+C$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\begin{array}{c}
\text { assumes nis a power of } 2
\end{array}
\end{gathered}
$$

$$
\text { Pf. For } \mathrm{n}>\mathrm{I}: \quad \begin{aligned}
\mathrm{T}(\mathrm{n}) / \mathrm{n} & =4 \mathrm{~T}(\mathrm{n} / 2) / \mathrm{n}+\mathrm{C} \\
& =2 T(\mathrm{n} / 2) /(\mathrm{n} / 2)+\mathrm{C}
\end{aligned}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Pf. For $n>1$

$$
\begin{aligned}
T(n) / n & =4 T(n / 2) / n+C \\
& =2 T(n / 2) /(n / 2)+C \\
& =2[2 T(n / 4) /(n / 4)+C]+C
\end{aligned}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Pf. For $n>1$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) / \mathrm{n} & =4 \mathrm{~T}(\mathrm{n} / 2) / \mathrm{n}+\mathrm{C} \\
& =2 \mathrm{~T}(\mathrm{n} / 2) /(\mathrm{n} / 2)+\mathrm{C} \\
& =2[2 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+\mathrm{C}]+\mathrm{C} \\
& =4 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+2 C+C
\end{aligned}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\text { assumes } \begin{array}{c}
1 \\
\text { is a power of } 2
\end{array}
\end{gathered}
$$

Pf. For $\mathrm{n}>\mathrm{I}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) / \mathrm{n} & =4 T(\mathrm{n} / 2) / \mathrm{n}+\mathrm{C} \\
& =2 T(\mathrm{n} / 2) /(\mathrm{n} / 2)+\mathrm{C} \\
& =2[2 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+C]+C \\
& =4 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+2 C+C \\
& =4[2 T(\mathrm{n} / 8) /(\mathrm{n} / 8)+C]+2 C+C
\end{aligned}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Pf. For $\mathrm{n}>\mathrm{I}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) / \mathrm{n} & =4 \mathrm{~T}(\mathrm{n} / 2) / \mathrm{n}+\mathrm{C} \\
& =2 T(\mathrm{n} / 2) /(\mathrm{n} / 2)+\mathrm{C} \\
& =2[2 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+\mathrm{C}]+\mathrm{C} \\
& =4 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+2 C+\mathrm{C} \\
& =4[2 T(\mathrm{n} / 8) /(\mathrm{n} / 8)+C]+2 C+C \\
& =8 T(\mathrm{n} / 8) /(\mathrm{n} / 8)+4 C+2 C+C
\end{aligned}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\mathrm{T}(n) \text { is } \Theta\left(n^{2}\right) \\
\text { assumes } \mathrm{i} \text { is a power of } 2
\end{gathered}
$$

Pf. For $\mathrm{n}>\mathrm{I}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) / \mathrm{n} & =4 T(\mathrm{n} / 2) / \mathrm{n}+\mathrm{C} \\
& =2 \mathrm{~T}(\mathrm{n} / 2) /(\mathrm{n} / 2)+\mathrm{C} \\
& =2[2 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+C]+C \\
& =4 T(\mathrm{n} / 4) /(\mathrm{n} / 4)+2 C+\mathrm{C} \\
& =4[2 T(\mathrm{n} / 8) /(\mathrm{n} / 8)+C]+2 C+C \\
& =8 T(\mathrm{n} / 8) /(\mathrm{n} / 8)+4 C+2 C+C
\end{aligned}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\text { assumes } \begin{array}{c}
1 \\
\text { is a power of } 2
\end{array}
\end{gathered}
$$

Pf. For $\mathrm{n}>\mathrm{I}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) / \mathrm{n} & =4 T(\mathrm{n} / 2) / \mathrm{n}+\mathrm{C} \\
& =2 T(\mathrm{n} / 2) /(\mathrm{n} / 2)+C \\
& =2[2 T(n / 4) /(n / 4)+C]+C \\
& =4 T(n / 4) /(n / 4)+2 C+C \\
& =4[2 T(n / 8) /(n / 8)+C]+2 C+C \\
& =8 T(n / 8) /(n / 8)+4 C+2 C+C \\
& \ldots \\
& =n T(1) / 1+n / 2 C+n / 4 C+\ldots+4 C+2 C+C
\end{aligned}
$$

Telescoping Proof

Claim.

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \begin{gathered}
\text { assumes } \begin{array}{c}
1 \\
\text { is a power of } 2
\end{array}
\end{gathered}
$$

Pf. For $\mathrm{n}>\mathrm{I}$

$$
\begin{aligned}
T(n) / n & =4 T(n / 2) / n+C \\
& =2 T(n / 2) /(n / 2)+C \\
& =2[2 T(n / 4) /(n / 4)+C]+C \\
& =4 T(n / 4) /(n / 4)+2 C+C \\
& =4[2 T(n / 8) /(n / 8)+C]+2 C+C \\
& =8 T(n / 8) /(n / 8)+4 C+2 C+C \\
& \ldots \\
& =n T(I) / I+n / 2 C+n / 4 C+\ldots+4 C+2 C+C \\
& =C(n / 2+n / 4+\ldots+2+1)=C(n-I) .
\end{aligned}
$$

Karatsuba Multiplication

To multiply two n -digit integers:

- Add two $\mathrm{n} / 2$ digit integers.
- Multiply three $\mathrm{n} / 2$-digit integers.
- Add, subtract, and shift $1 / 2$-digit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)+x_{0} y_{0} \\
& \mathrm{~A} \quad \mathrm{~B}
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \Rightarrow \mathrm{T}(n) \text { is } O\left(n^{\log _{2} 3}\right) \text { is } O\left(n^{1.585}\right)
\end{aligned}
$$

$$
\sum_{k=0}^{n-1} a r^{k}=a \frac{1-r^{n}}{1-r}
$$

Karatsuba Recursion Tree

$$
\mathrm{T}(n)=\left\{\begin{array}{cl}
0 & \text { if } n=1 \\
3 T(n / 2)+n & \text { otherwise }
\end{array}\right.
$$

$$
\mathrm{T}(n)=\sum_{k=0}^{\log _{2} n} n\left(\frac{3}{2}\right)^{k}=n \frac{\left(\frac{3}{2}\right)^{1+\log _{2} n}-1}{\frac{3}{2}-1}=3 n^{\log _{2} 3}-2
$$

$T\left(n / 2^{k}\right)$

$\begin{array}{llll}\mathrm{T}(2) & \mathrm{T}(2) & \mathrm{T}(2) & \mathrm{T}(2)\end{array}$
$\begin{array}{llll}\mathrm{T}(2) & \mathrm{T}(2) & \mathrm{T}(2) & \mathrm{T}(2)\end{array}$
$3^{\lg n}(2)$

Karatsuba Multiplication

Generalization: $O\left(n^{1+\varepsilon}\right)$ for any $\varepsilon>0$.
Best known: $n \log n 2^{\circ\left(\log ^{*} n\right)}$
where $\log ^{*}(x)= \begin{cases}0 & \text { if } x \leq 1 \\ 1+\log ^{*}(\log x) & \text { if } x>1\end{cases}$
Conjecture: $\Omega(\mathrm{n} \log \mathrm{n})$ but not proven yet.

Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture I2, February I8, 2016

