# Winter 2016 <br> COMP-250: Introduction to Computer Science <br> Lecture II, February 16, 2016 

## Please participate in a 10-minute survey on the undergraduate student experience in SOCS!

Complete the survey before Feb. 22: surveys.mcgill.ca/limesurvey/ index.php?sid=94659

This study is conducted on behalf of the Undergraduate Committee and the Women@SOCS Committee in the School of Computer Science in collaboration with the Computer Science Undergraduate Society (CSUS). The purpose of this survey is to assess the strengths and weaknesses of SOCS, and to recommend measures to improve the student experience.


For any questions, email Brigitte Pientka at bpientka@cs.mcgill.ca

## McGill <br> School of Computer Science

## Tower of Hanoi

Goal: move the n discs from stack \#3 to stack \#2

## Tower of Hanoi

Goal: move the n discs from stack \#3 to stack \#2

## Tower of Hanoi

- allowing only one disc removed at any time



## Tower of Hanoi

- allowing only a smaller disc to rest on top of a larger one.


3

## Tower of Hanoi

Goal: move the n discs from stack \#3 to stack \#2 while

- allowing only one disc removed at any time
- allowing only a smaller disc to rest on top of a larger one.


## Hanoi(I,S3,S2,SI) <br> Base case:

move disc I from S3 to S2

$$
2
$$

3

## Hanoi(I,S3,S2,SI) <br> Base case:

move disc I from S3 to S2


3

## Hanoi(n,S3,S2,SI) // n $\geq 1$

## if n>I then Hanoi(n-I,S3,SI,S2) move disc n from S 3 to S 2 if $n>$ Ithen Hanoi( $\mathrm{n}-\mathrm{I}, \mathrm{SI}, \mathrm{S} 2, \mathrm{S3}$ )



## Hanoi(n,S3,S2,SI) // n $\geq 1$

if $n>$ Ithen Hanoi( $n-I, S 3, S I, S 2$ )
if $\mathrm{n}>$ I then Hanoi( $\mathrm{n}-\mathrm{I}, \mathrm{SI}, \mathrm{S} 2, \mathrm{~S} 3$ )
I


## Hanoi(n,S3,S2,SI) // n $\geq 1$

if $n>$ Ithen Hanoi( $n$-I,S3,SI,S2)
if $\mathrm{n}>$ I then Hanoi( $\mathrm{n}-\mathrm{I}, \mathrm{SI}, \mathrm{S} 2, \mathrm{~S} 3$ )


3

## Hanoi(n,S3,S2,SI) // n $\geq 1$

if $n>$ Ithen Hanoi( $n$-I,S3,SI,S2) move disc n from S 3 to S 2

I
2
3

## Hanoi(n,S3,S2,SI) // n $\geq$ I

if $n>$ Ithen Hanoi( $n$-I,S3,SI,S2) move disc $n$ from S 3 to S 2 if $n>$ Ithen Hanoi( n -I,SI,S2,S3)


## Hanoi(n,S3,S2,SI) // n $\geq 1$

if $n>$ Ithen Hanoi( $n-I, S 3, S I, S 2$ ) move disc $n$ from S 3 to S 2 if $n>$ Ithen Hanoi( n -I,SI,S2,S3)


## Hanoi(5,S3,S2,SI) // $n \geq 1$

if $n>$ Ithen Hanoi( $4, S 3, \mathrm{SI}, \mathrm{S} 2$ )
move disc $n$ from S 3 to S 2 if $n>$ Ithen Hanoi( $4, S I, S 2, S 3$ )

I


3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2)


## Hanoi(5,S3,S2,SI) // n $\geq$ I

$\begin{aligned} & \text { if } 5>\text { I then } \operatorname{Hanoi}(4, S 3, S I, S 2) \\ & \text { if } 4>\text { I then } \operatorname{Hanoi}(3, S 3, S 2, S I)\end{aligned}$

I


3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi( $4, S 3, S I, S 2)$
if $4>$ Ithen $\operatorname{Hanoi}(3, S 3, S 2, S 1)$
if $3>$ Ithen $\operatorname{Hanoi}(2, S 3, S I, S 2)$

I


3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2) if $4>$ I then Hanoi( $3, \mathrm{~S} 3, \mathrm{~S} 2, \mathrm{SI}$ )<br>if $3>$ Ithen Hanoi $(2, S 3, S 1, S 2)$<br>if $2>$ Ithen Hanoi(I,S3,S2,SI)<br>move disc I from S3 to S2



## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2) if $4>$ I then Hanoi( $3, \mathrm{~S} 3, \mathrm{~S} 2, \mathrm{SI}$ )<br>if $3>$ Ithen Hanoi $(2, S 3, S 1, S 2)$<br>if $2>$ Ithen Hanoi(I,S3,S2,SI)<br>move disc I from S3 to S2



## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2) if $4>$ I then Hanoi( 3, S3,S2,SI)<br>if $3>$ I then Hanoi $(2, S 3, S 1, S 2)$ move disc 2 from S3 to SI



3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2)<br>if $4>$ I then Hanoi( $3, \mathrm{~S} 3, \mathrm{~S} 2, \mathrm{SI}$ )<br>if $3>$ Ithen Hanoi $(2, S 3, S 1, S 2)$<br>move disc 2 from S3 to SI



## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then $\operatorname{Hanoi}(4, S 3, S I, S 2)$
if $4>$ Ithen $\operatorname{Hanoi}(3, S 3, S 2, S 1)$
if $3>$ I then Hanoi( $2, S 3, S I, S 2)$
if $2>$ Ithen $\operatorname{Hanoi}(I, S 2, S 1, S 3)$


## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2)
if $4>\mathrm{I}$ then $\mathrm{Hanoi}(3, \mathrm{S3}, \mathrm{~S} 2, \mathrm{SI})$
if $3>$ I then $\mathrm{Hanoi}(2, S 3, \mathrm{SI}, S 2)$
if $2>$ Ithen $\mathrm{Hanoi}(1, S 2, S I, S 3)$ move disc $I$ from $S 2$ to SI


## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2)
if $4>\mathrm{I}$ then $\mathrm{Hanoi}(3, \mathrm{S3}, \mathrm{~S} 2, \mathrm{SI})$
if $3>$ I then Hanoi( $2, \mathrm{~S} 3, \mathrm{SI}, \mathrm{S} 2$ )
if $2>$ Ithen $\mathrm{Hanoi}(1, S 2, S I, S 3)$ move disc $I$ from $S 2$ to SI


3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then $\mathrm{Hanoi}(4, S 3, S I, S 2)$<br>if $4>\mathrm{I}$ then $\mathrm{Hanoi}(3, \mathrm{~S}, \mathrm{~S} 2, \mathrm{SI})$ move disc 3 from S3 to S2



3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then $\mathrm{Hanoi}(4, S 3, S I, S 2)$<br>if $4>\mathrm{I}$ then $\mathrm{Hanoi}(3, \mathrm{~S}, \mathrm{~S} 2, \mathrm{SI})$ move disc 3 from S3 to S2



3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ I then Hanoi(4,S3,SI,S2)
if $4>\mathrm{I}$ then $\mathrm{Hanoi}(3, \mathrm{S3}, \mathrm{~S} 2, \mathrm{SI})$
if $3>$ I then Hanoi $(2, \mathrm{SI}, \mathrm{S} 2, \mathrm{~S} 3)$


## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ Ithen $\mathrm{Hanoi}(4, S 3, S I, S 2)$
if $4>$ I then $\mathrm{Hanoi}(3, \mathrm{S3}, \mathrm{~S} 2, \mathrm{SI})$
if $3>$ Ithen $\operatorname{Hanoi}(2, \mathrm{SI}, \mathrm{S} 2, \mathrm{~S} 3)$


## Hanoi(5,S3,S2,SI) // $n \geq 1$

## if $5>$ I then Hanoi(4,S3,SI,S2) move disc 4 from S3 to SI



## Hanoi(5,S3,S2,SI) // $n \geq 1$

## if $5>$ I then Hanoi(4,S3,SI,S2) move disc 4 from S3 to SI



## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>I$ then $\operatorname{Hanoi}(4, S 3, S I, S 2)$
if $4>I$ then $\operatorname{Hanoi}(3, S 2, S I, S 3)$


3

## Hanoi(5,S3,S2,SI) // n $\geq$ I

if $5>$ Ithen $\operatorname{Hanoi}(4, S 3, S I, S 2)$
if $4>I$ then $\operatorname{Hanoi}(3, S 2, S 1, S 3)$

I
2
3

## Hanoi(5,S3,S2,SI) // $n \geq 1$

## move disc 5 from S3 to S2



3

## Hanoi(5,S3,S2,SI) // $n \geq 1$

## move disc 5 from S3 to S2



3

## Hanoi(5,S3,S2,SI) // $n \geq 1$

if $5>$ I then $\operatorname{Hanoi}(4, \mathrm{SI}, \mathrm{S} 2, S 3)$


## Hanoi(5,S3,S2,SI) // $n \geq 1$

if $5>$ I then $\operatorname{Hanoi}(4, \mathrm{SI}, \mathrm{S} 2, S 3)$


## Hanoi(5,S3,S2,SI) // $n \geq 1$



## Recurrence Relation

Def. $T(n)=$ number of moves to Hanoi of $n$.

Hanoi recurrence.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \mathrm{~T}(n-1)+1 & \text { if } n>1\end{cases}
$$

Solution. $T(n)$ is $O\left(2^{n}\right)$.

Assorted proofs. We describe several ways to prove this recurrence.

## Telescoping Proof

Claim. If $(n)$ satisfies this recurrence, then $T(n)=2^{n}-I$.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \mathrm{~T}(n-1)+1 & \text { if } n>1\end{cases}
$$

Pf. For $n>I: \quad T(n)=2 T(n-I)+I$

$$
\begin{aligned}
& =2(2 T(n-2)+1)+1 \\
& =4 T(n-2)+2+1 \\
& =4(2 T(n-3)+1)+2+1 \\
& =8 T(n-3)+4+2+1 \\
& \cdots \\
& =2^{k} T(n-k)+2^{k-1}+\ldots+2+1 \\
& \ldots \\
& =2^{n-1} T(1)+2^{n-2}+\ldots+2+1 \\
& =2^{n}-1
\end{aligned}
$$

## Induction Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=2^{n}-I$.

$$
\mathrm{T}(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \mathrm{~T}(n-1)+1 & \text { if } n>1\end{cases}
$$

Pf. (by induction on n)

- Base case: $\mathrm{n}=\mathrm{I}=2^{\prime}$ - I .
- Inductive hypothesis: for $n \geq I, T(n)=2^{n}$ - I.
- Goal: show that $T(n+1)=2^{n+1}-I$.

$$
\begin{aligned}
\mathrm{T}(n+1) & =2 \mathrm{~T}(n)+1 \quad \text { by definition } \\
& =2\left(2^{n}-1\right)+1 \quad \text { by I.H. } \\
& =2^{n+1}-2+1 \\
& =2^{n+1}-1 .
\end{aligned}
$$

## Merge Sort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.


Jon von Neumann (1945)

| A | L | G | O | R | I | T | H | M | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| A | L | G | O | R |
| :--- | :--- | :--- | :--- | :--- |


| A | G | L | O | R |
| :--- | :--- | :--- | :--- | :--- |


| A | G | H | I | L | M | O | R | S | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

merge $O(n)$

## Recurrence Relation

Def. $\mathrm{T}(\mathrm{n})=$ number of comparisons to mergesort an input of size n .

Mergesort recurrence.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Solution. $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace $\leq$ with $=$.

## Telescoping Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes $n$ is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. For $\mathrm{n}>\mathrm{I}$ :

$$
\begin{array}{rll}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n} & +1 \\
& =\frac{T(n / 2)}{n / 2}+1 \\
& =\frac{T(n / 4)}{n / 4} & +1+1 \\
& \cdots & \\
& =\frac{T(n / n)}{n / n} & +\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

## Induction Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on $k$ such that $n=2^{k}$ )

- Base case: $\mathrm{n}=2^{0}=1$.
- Inductive hypothesis: $T(n)=T\left(2^{k}\right)=n \log _{2} n$.
- Goal: show that $T(2 n)=T\left(2^{k+1}\right)=2 n \log _{2}(2 n)$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

## Generalized Induction Proof

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on $n$ )

- Base case: $\mathrm{n}=\mathrm{I} . \mathrm{T}(\mathrm{I})=0=\mathrm{I}\lceil\mathrm{Ig} \mathrm{I}\rceil$.
- Define $\mathrm{n}_{1}=\lfloor\mathrm{n} / 2\rfloor, \mathrm{n}_{2}=\lceil\mathrm{n} / 2\rceil$. (note $\mathrm{I} \leq \mathrm{n}_{1}<\mathrm{n}, \mathrm{I} \leq \mathrm{n}_{2}<\mathrm{n}$ )
- Induction step: Let $n \geq 2$, assume true for $I, 2, \ldots, n-I$.

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\lg n_{1}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\lg n_{2}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& =n\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n(\lceil\lg n\rceil-1)+n \\
& =n\lceil\lg n\rceil
\end{aligned}
$$

$$
\begin{aligned}
n_{2} & =\lceil n / 2\rceil \\
& \leq\left\lceil 2^{\lceil\lg n\rceil} / 2\right\rceil \\
& =2^{\lceil\lg n\rceil} / 2 \\
\Rightarrow & \lg n_{2} \leq\lceil\lg n\rceil-1
\end{aligned}
$$

# Winter 2016 <br> COMP-250: Introduction to Computer Science <br> Lecture II, February 16, 2016 

