Winter 2016 COMP-250: Introduction to Computer Science

Lecture 10, February 11, 2016

A Survey of Common Running Times

Linear Time: O(n)

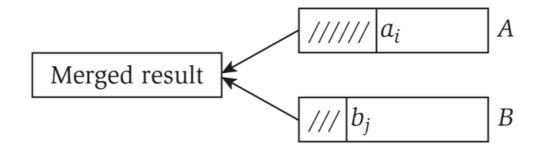
Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

```
max ← a<sub>1</sub>
for i = 2 to n {
   if (a<sub>i</sub> > max)
      max ← a<sub>i</sub>
}
```

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into a sorted whole.



Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps $x_1, ..., x_n$ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps $x_1, ..., x_n$ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps $x_1, ..., x_n$ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n²)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.

O(n²) solution. Try all pairs of points.

```
min \leftarrow (\mathbf{x}_{1} - \mathbf{x}_{2})^{2} + (\mathbf{y}_{1} - \mathbf{y}_{2})^{2}

for i = 1 to n {
	for j = i+1 to n {
	d \leftarrow (\mathbf{x}_{i} - \mathbf{x}_{j})^{2} + (\mathbf{y}_{i} - \mathbf{y}_{j})^{2}
	if (d < min)
	min \leftarrow d
}
```

Remark. This algorithm is $\Omega(n^2)$ and it seems inevitable in general, but this is just an illusion.

Cubic Time: O(n³)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets $S_1, ..., S_n$ each of which is a subset of I, 2, ..., n, is there some pair of these which are disjoint?

 $O(n^3)$ solution. For each pair of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
   foreach other set S<sub>j</sub> {
     foreach element p of S<sub>i</sub> {
        determine whether p also belongs to S<sub>j</sub>
     }
     if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
        report that S<sub>i</sub> and S<sub>j</sub> are disjoint
   }
}
```

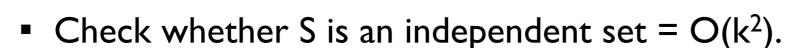
Polynomial Time: O(n^k)

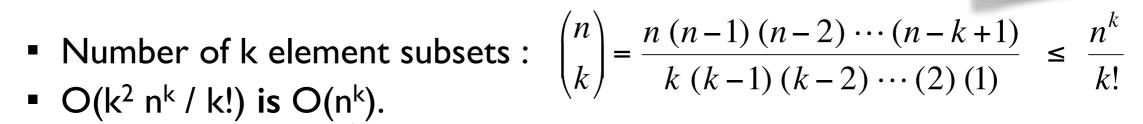
Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

k is a constant

O(n^k) solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```





poly-time for k=17, but not practical

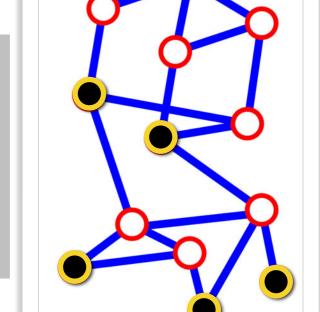
Polynomial Time: O(n^k)

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

k is a constant

O(n^k) solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```



- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets : $\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}$ O(k² n^k / k!) is O(n^k).

poly-time for k=17, but not practical

Exponential Time: O(cⁿ)

Independent set. Given a graph, what is the maximum size of an independent set?

O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* ← Ø
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* ← S
   }
}
```

Induction and Recursion

Predicate.

• P(n): f(n) = some formula in n

Statement.

 $\forall n \geq I, P(n)$ is true.

Proof.

Predicate.

• P(n): f(n) = some formula in n

Statement.

 $\forall n \geq I, P(n)$ is true.

Proof.

Base case: proof that P(I) is true.

Predicate.

• P(n): f(n) = some formula in n

Statement.

 $\forall n \geq I, P(n)$ is true.

Proof.

Base case: proof that P(I) is true.

Predicate.

• P(n): f(n) = some formula in n

Statement.

 $\forall n \geq I, P(n)$ is true.

Proof.

- Base case: proof that P(I) is true.
- Induction step: $\forall n \geq I$, $P(n) \Longrightarrow P(n+I)$.

Let $n \ge 1$.

Assume for induction hypothesis that P(n) is true and prove P(n+1) is also true.

Predicate.

■ P(n) : I+2+...+n = n(n+I)/2

Predicate.

■ P(n) : I+2+...+n = n(n+I)/2

- P(n): I+2+...+n = n(n+1)/2
- Base case: when n=1 we have
 I+...+n = I = I(2)/2 = n(n+1)/2.
 P(I) is true.

- P(n): I+2+...+n = n(n+1)/2
- Base case: when n=1 we have
 I+...+n = I = I(2)/2 = n(n+1)/2.
 P(I) is true.

- P(n): I+2+...+n = n(n+1)/2
- Base case: when n=1 we have
 I+...+n = I = I(2)/2 = n(n+1)/2.
 P(I) is true.
- Induction step: let n≥ I. Assume for induction hypothesis that P(n) is true.
 We show P(n+I) is true as well: I+2+...+n+(n+I) = n(n+I)/2 + (n+I) by I.H. = (n+I)(n/2 + I) = (n+I)(n+2)/2.
 n≥ I, P(n) ⇒ P(n+I).

Predicate. n

• $P(n) : \sum_{i=1}^{n} i = n(n+1)/2$

Predicate. n

• $P(n) : \sum_{i=1}^{n} i = n(n+1)/2$

- $P(n) : \sum_{i=1}^{n} i = n(n+1)/2$
- Base case: when $n=1, \sum_{i=1}^{I} i = I = I(2)/2 = n(n+1)/2$.

 P(I) is true.

- $P(n) : \sum_{i=1}^{n} i = n(n+1)/2$
- Base case: when $n=1, \sum_{i=1}^{I} i = I = I(2)/2 = n(n+1)/2$.

 P(I) is true.

- $P(n) : \sum_{i=1}^{n} i = n(n+1)/2$
- Base case: when $n=1, \sum_{i=1}^{I} i = I = I(2)/2 = n(n+1)/2$.

 P(I) is true.
- Induction step: let n≥ I. Assume for induction hypothesis that P(n) is true. We show P(n+I) is true as well:

$$\sum_{i=1}^{n+1} i = (n+1) + \sum_{i=1}^{n} i$$

$$= (n+1) + n(n+1)/2 \text{ by I.H.}$$

$$= (n+1)(1+n/2)$$

$$= (n+1)(n+2)/2.$$

$$n \ge 1, P(n) \Longrightarrow P(n+1).$$

```
f(n)
sum ← 0
for i = 2 to n {
   sum ← sum + i
}
return sum
```

{

```
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```

```
f(n)
sum ← 0
for i = 2 to n {
   sum ← sum + i
}
return sum
```

{

```
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```

```
• f(n) = 1 + 2 + ... + n = \sum_{i=1}^{n} i
```

```
f(n)
sum ← 0
for i = 2 to n {
    sum ← sum + i
}
return sum
```

 $\begin{cases} 0 & \text{if } n = 0 \end{cases}$

```
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```

```
• f(n) = 1 + 2 + ... + n = \sum_{i=1}^{n} i
```

```
f(n)
sum ← 0
for i = 2 to n {
    sum ← sum + i
}
return sum
```

•
$$f(n) = \begin{cases} 0 & \text{if } n = 0 \\ f(n-1) + n & \text{if } n > 0 \end{cases}$$

```
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```

Predicate.

• P(n) : f(n) = n(n+1)/2

Predicate.

• P(n) : f(n) = n(n+1)/2

- P(n) : f(n) = n(n+1)/2
- Base case: when n=1, f(1) = 1 = 1(2)/2 = n(n+1)/2. P(1) is true.

- P(n) : f(n) = n(n+1)/2
- Base case: when n=1, f(1) = 1 = 1(2)/2 = n(n+1)/2. P(1) is true.

- P(n) : f(n) = n(n+1)/2
- Base case: when n=1, f(1) = 1 = 1(2)/2 = n(n+1)/2.
 P(1) is true.
- Induction step: let n≥ I. Assume for induction hypothesis that P(n) is true. We show P(n+I) is true as well:

$$f(n+1) = f(n) + (n+1)$$
 by definition
= $n(n+1)/2 + (n+1)$ by I.H.
= $(n+1)(n/2+1)$
= $(n+1)(n+2)/2$.
 $n \ge 1, P(n) \implies P(n+1)$.

Predicate.

• P(n): f(n) = some formula in n

Statement.

For all $n \ge 1$, P(n) is true.

Proof.

Predicate.

• P(n): f(n) = some formula in n

Statement.

For all $n \ge 1$, P(n) is true.

Proof.

Base case: proof that P(I) is true.

Predicate.

• P(n): f(n) = some formula in n

Statement.

For all $n \ge 1$, P(n) is true.

Proof.

Base case: proof that P(I) is true.

Predicate.

• P(n): f(n) = some formula in n

Statement.

For all $n \ge 1$, P(n) is true.

Proof.

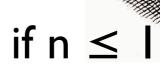
- Base case: proof that P(I) is true.
- Induction step: let n≥ I. Assume for induction hypothesis that P(I)...P(n) are all true. We show P(n+I) is also true.

Recursion

Recursion: Fibonacci Sequence

{

Recursion: Fibonacci Sequence



Recursion: Fibonacci Sequence

• fib(n)=
$$\begin{cases} n & \text{if } n \leq 1 \\ \text{fib(n-1)} + \text{fib(n-2)} & \text{if } n > 1 \end{cases}$$

Fibonacci sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

Recursion: Fibonacci Sequence

• fib(n)=
$$\begin{cases} n & \text{if } n \leq 1 \\ \text{fib(n-1)} + \text{fib(n-2)} & \text{if } n > 1 \end{cases}$$

Fibonacci sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

Recursion: Fibonacci Sequence

• fib(n)=
$$\begin{cases} n & \text{if } n \leq 1 \\ \text{fib(n-1)} + \text{fib(n-2)} & \text{if } n > 1 \end{cases}$$

Fibonacci sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

Recursion: Fibonacci Sequence

• fib(n)=
$$\begin{cases} n & \text{if } n \leq 1 \\ \text{fib(n-1)} + \text{fib(n-2)} & \text{if } n > 1 \end{cases}$$

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

NOT so easy to define iteratively...

Recursion vs Iteration

{

```
fib(n)
if n < 2 { return n }
else { return fib(n-1) + fib(n-2) }</pre>
```

```
fib(n)
a ← 0
b ← 1
for i = 1 to n {
   b ← a + b
   a ← b - a
}
return a
```

Recursion vs Iteration

```
fib(n)
if n < 2 { return n }
else { return fib(n-1) + fib(n-2) }</pre>
```

```
fib(n)
a ← 0
b ← 1
for i = 1 to n {
   b ← a + b
   a ← b - a
}
return a
```

Recursion vs Iteration

```
• fib(n)= \begin{cases} n & \text{if } n \leq 1 \\ \text{fib(n-1) + fib(n-2)} & \text{if } n > 1 \end{cases}
```

```
fib(n)
if n < 2 { return n }
else { return fib(n-1) + fib(n-2) }</pre>
```

```
fib(n)
a ← 0
b ← 1
for i = 1 to n {
   b ← a + b
   a ← b - a
}
return a
```

Statement.

For all $n \ge 0$, P(n): fib(n) $\le 2^n$ is true.

Proof.

Statement.

For all $n \ge 0$, P(n): fib(n) $\le 2^n$ is true.

Proof.

■ Base case: P(0): fib $(0) = 0 \le 2^0$ is true. P(1): fib $(1) = 1 \le 2^1$ is true.

Statement.

For all $n \ge 0$, P(n): fib(n) $\le 2^n$ is true.

Proof.

■ Base case: P(0): fib $(0) = 0 \le 2^0$ is true. P(1): fib $(1) = 1 \le 2^1$ is true.

Statement.

For all $n \ge 0$, P(n): fib(n) $\le 2^n$ is true.

Proof.

- Base case: P(0): fib $(0) = 0 \le 2^0$ is true. P(1): fib $(1) = 1 \le 2^1$ is true.
- Induction step: let n≥ I. Assume for induction hypothesis that P(0)...P(n) are all true. We show P(n+I) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
$$\leq 2^n + 2^{n-1}$$
 by gen. I. H. $< 2^{n-1} \cdot 3 < 2^{n+1}$

Statement.

For all $n \ge 1$, P(n): fib(n) $\le \varphi^n$ is true.

Statement.

For all $n \ge 1$, P(n): fib(n) $\le \varphi^n$ is true.

```
■ Base case: P(I): fib(I) = I \le \varphi^I is true (if \varphi \ge I). P(2): fib(2) = I \le \varphi^2 is true (if \varphi \ge I).
```

Statement.

For all $n \ge 1$, P(n): fib(n) $\le \varphi^n$ is true.

```
■ Base case: P(I): fib(I) = I \le \varphi^I is true (if \varphi \ge I). P(2): fib(2) = I \le \varphi^2 is true (if \varphi \ge I).
```

Statement.

For all $n \ge 1$, P(n): fib(n) $\le \varphi^n$ is true.

- Base case: P(I): fib(I) = I ≤ φ ^I is true (if φ ≥I). P(2): fib(2) = I ≤ φ ² is true (if φ ≥I).
- Induction step: let n≥ I. Assume for induction hypothesis that P(I)...P(n) are all true. We show P(n+I) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
$$\leq \varphi^n + \varphi^{n-1}$$
 by gen. I. H. $\leq \varphi^{n-1} (\varphi+1) \leq \varphi^{n+1}$ whenever $(\varphi+1) \leq \varphi^2$ whenever $0 \leq \varphi^2 - \varphi - 1$.

Statement.

For all $n \ge 1$, P(n): fib(n) $\ge \varphi^{n-2}$ is true.

Statement.

For all $n \ge 1$, P(n): fib(n) $\ge \varphi^{n-2}$ is true.

Proof.

■ Base case: P(I): fib $(I) = I \ge \varphi^{-1}$ is true (if $\varphi \ge I$). P(2): fib $(2) = I = \varphi^0$ is true.

Statement.

For all $n \ge 1$, P(n): fib(n) $\ge \varphi^{n-2}$ is true.

Proof.

■ Base case: P(I): fib $(I) = I \ge \varphi^{-1}$ is true (if $\varphi \ge I$). P(2): fib $(2) = I = \varphi^0$ is true.

Statement.

For all $n \ge 1$, P(n): fib(n) $\ge \varphi^{n-2}$ is true.

- Base case: P(1): fib(1) = $I \ge \varphi^{-1}$ is true (if $\varphi \ge I$). P(2): fib(2) = $I = \varphi^0$ is true.
- Induction step: let n≥ I. Assume for induction hypothesis that P(I)...P(n) are all true. We show P(n+I) is also true:

fib(n+1) = fib(n) + fib(n-1) by definition
$$\geq \varphi^{n-2} + \varphi^{n-3}$$
 by gen. I. H. $\geq \varphi^{n-3} (\varphi+1) \geq \varphi^{n-1}$ whenever $(\varphi+1) \geq \varphi^2$ whenever $0 \geq \varphi^2 - \varphi - 1$.

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

For all $n \ge 1$, fib(n) $\ge \varphi^{n-2}$ is true. whenever $0 \ge \varphi^2 - \varphi - 1$ and $\varphi \ge 1$.

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

For all $n \ge 1$, fib(n) $\ge \varphi^{n-2}$ is true. whenever $0 \ge \varphi^2 - \varphi - 1$ and $\varphi \ge 1$.

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

```
For all n \ge 1, fib(n) \ge \varphi^{n-2} is true.
whenever 0 \ge \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

Statements.

For all $n \ge 1$, fib(n) $\le \varphi^n$ is true. whenever $0 \le \varphi^2 - \varphi - 1$ and $\varphi \ge 1$.

For all $n \ge 1$, fib(n) $\ge \varphi^{n-2}$ is true. whenever $0 \ge \varphi^2 - \varphi - 1$ and $\varphi \ge 1$.

Therefore:

For all $n \ge 1$, $\varphi^n/\varphi^2 \le fib(n) \le \varphi^n$ is true. whenever $0 = \varphi^2 - \varphi - 1$ and $\varphi \ge 1$.

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

```
For all n \ge 1, fib(n) \ge \varphi^{n-2} is true.
whenever 0 \ge \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

```
For all n \ge 1, \varphi^n/\varphi^2 \le fib(n) \le \varphi^n is true.
whenever 0 = \varphi^2 - \varphi - 1 and \varphi \ge 1.
Only solution \varphi = golden ration = <math>(1 + \sqrt{5})/2.
```

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

```
For all n \ge 1, fib(n) \ge \varphi^{n-2} is true.
whenever 0 \ge \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

```
For all n \ge 1, \varphi^n/\varphi^2 \le fib(n) \le \varphi^n is true.
whenever 0 = \varphi^2 - \varphi - 1 and \varphi \ge 1.
Only solution \varphi = golden ration = <math>(1 + \sqrt{5})/2.
```

Statements.

```
For all n \ge 1, fib(n) \le \varphi^n is true.
whenever 0 \le \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

```
For all n \ge 1, fib(n) \ge \varphi^{n-2} is true.
whenever 0 \ge \varphi^2 - \varphi - 1 and \varphi \ge 1.
```

For all
$$n \ge 1$$
, $\varphi^n/\varphi^2 \le fib(n) \le \varphi^n$ is true.
whenever $0 = \varphi^2 - \varphi - 1$ and $\varphi \ge 1$.
Only solution $\varphi = golden ration = $(1 + \sqrt{5})/2$.$

fib(n) is
$$\boldsymbol{\theta}(\varphi^n)$$
.

{

n if

if $n \leq 1$

f-sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

f-sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

f-sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

Statement.

For all $n \ge 0$, fib(n) = f(n).

f-sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

Statement.

For all $n \ge 0$, fib(n) = f(n).

f-sequence: 0,1,1,2,3,5,8,13,21,34,55,89,144,...

Statement.

For all $n \ge 0$, fib(n) = f(n).

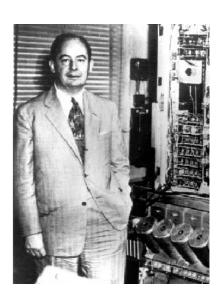
Left as an exercise...

Recursive Algorithms

Merge Sort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.



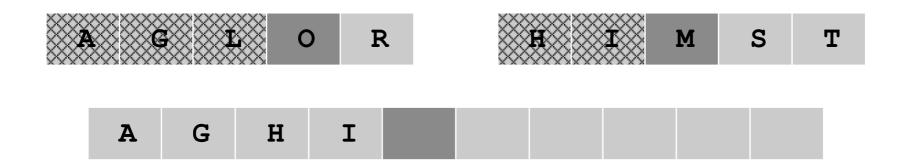
Jon von Neumann (1945)

	A	L	G	0	R	I	T	Н	M	S			
A	I		G	0	R		I	T	Н	M	S	divide	O(I)
A	G	3 :	L	0	R		Н	I	M	S	T	sort	2T(n/2)
ı	A	G	Н	I	L	М	0	R	S	T		merge	O(n)

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

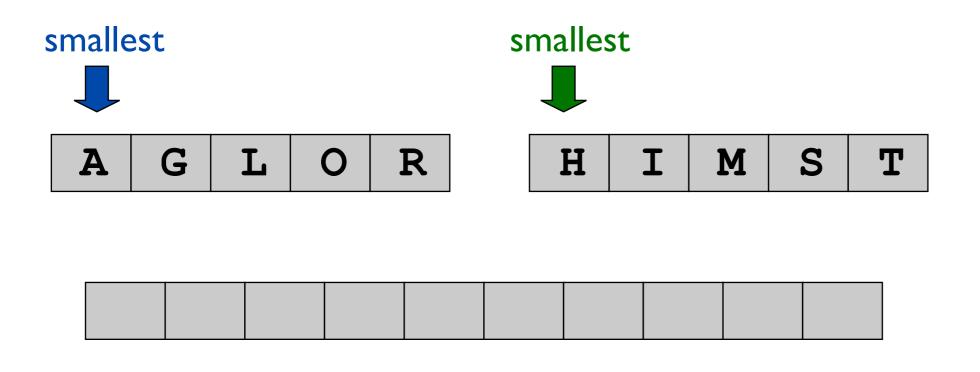
- Linear number of comparisons.
- Use temporary array.



Challenge for the bored. In-place merge. [Kronrod, 1969]

Merging.

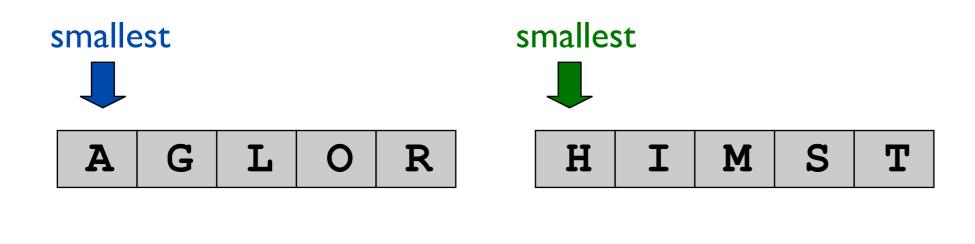
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

A

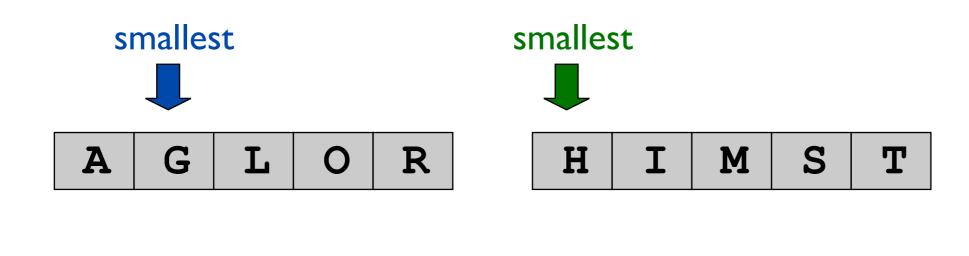


Merging Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

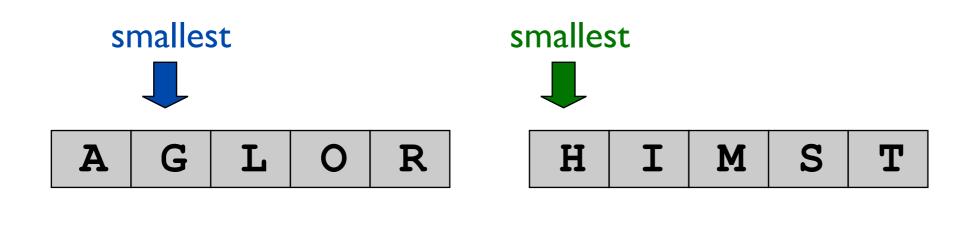
A



Merging Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



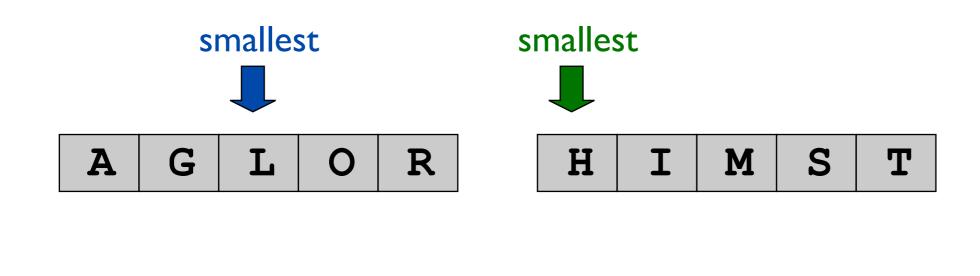
G A

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

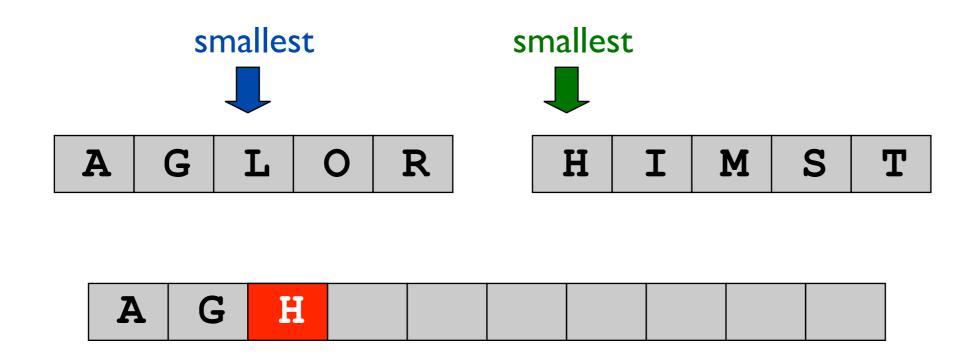
A

G



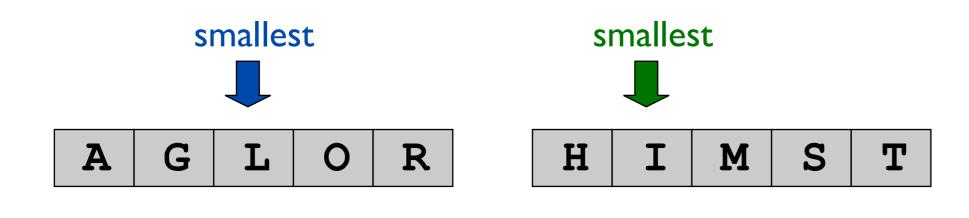
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



Merging.

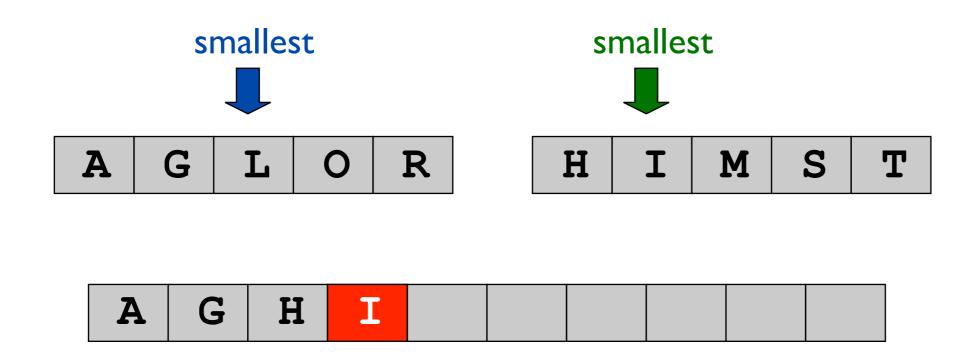
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



A G H

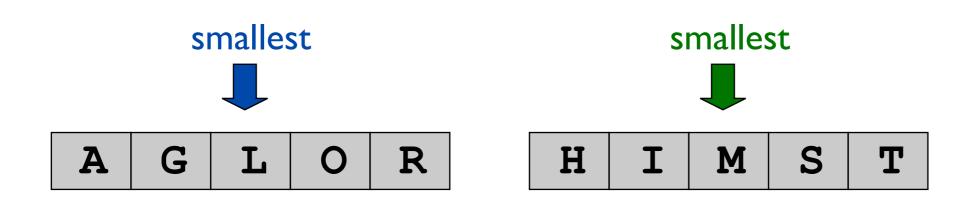
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



Merging.

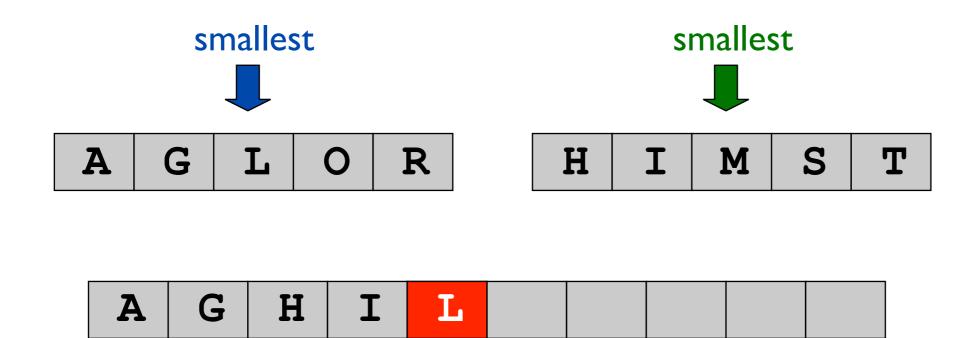
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



A G H I

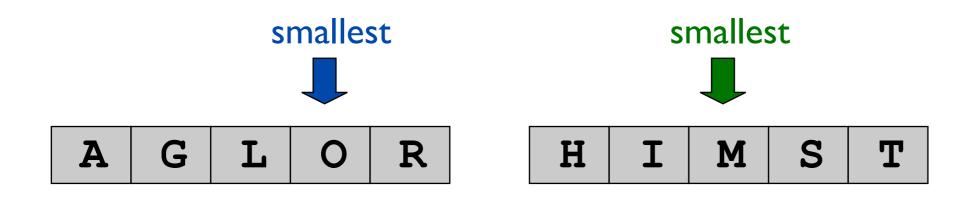
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



Merging.

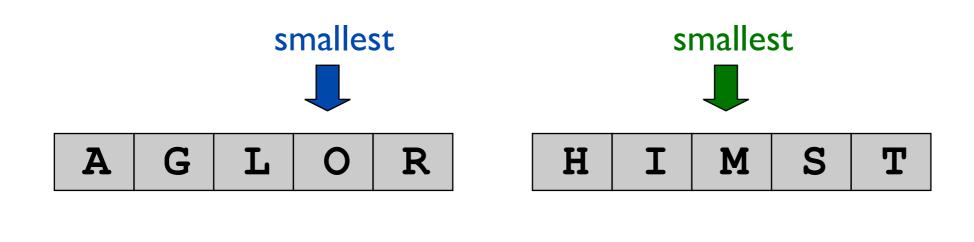
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



A G H I L

Merging.

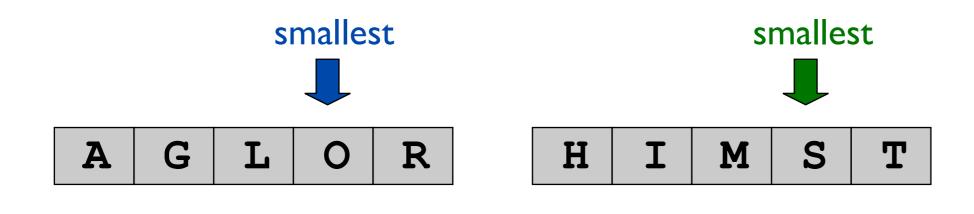
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



A G H I L M

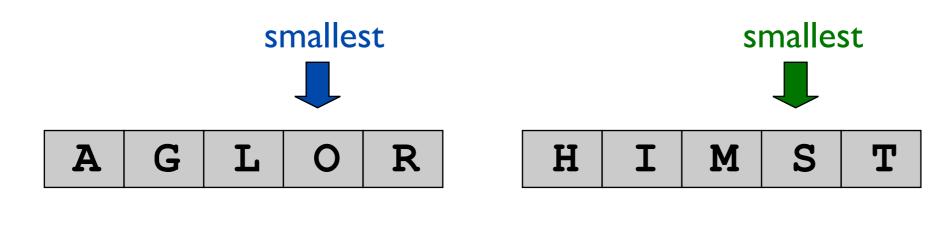
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



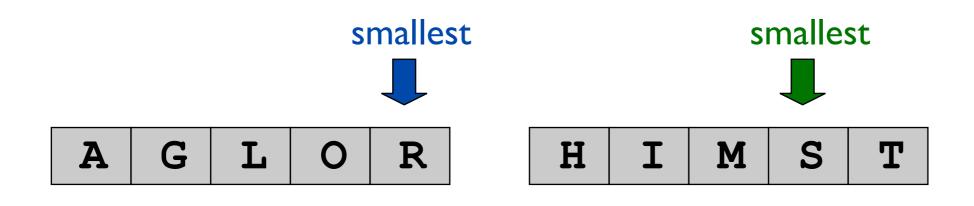
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



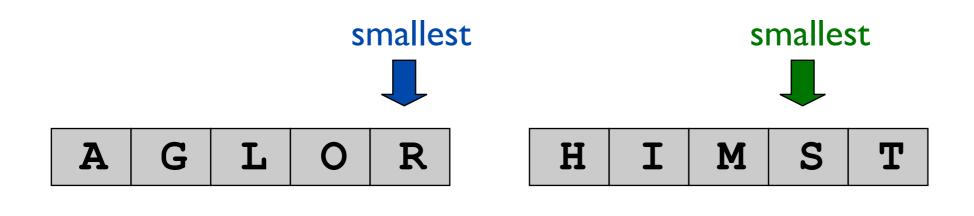
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



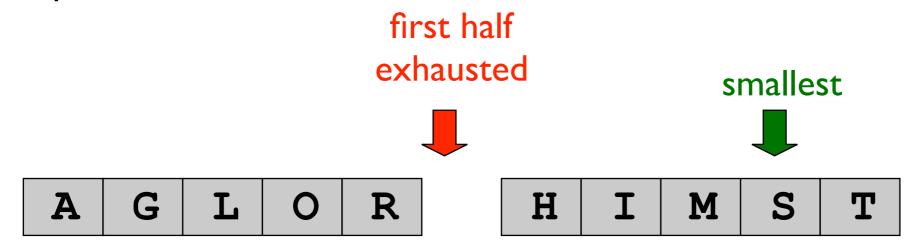
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



Merging.

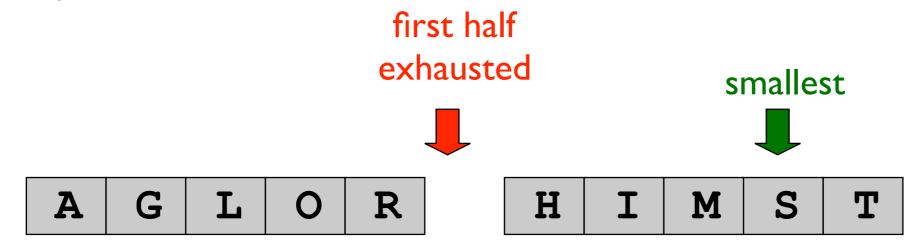
- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



A G H I L M O R

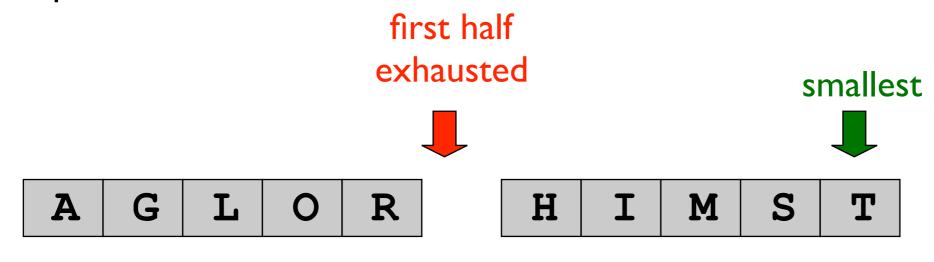
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



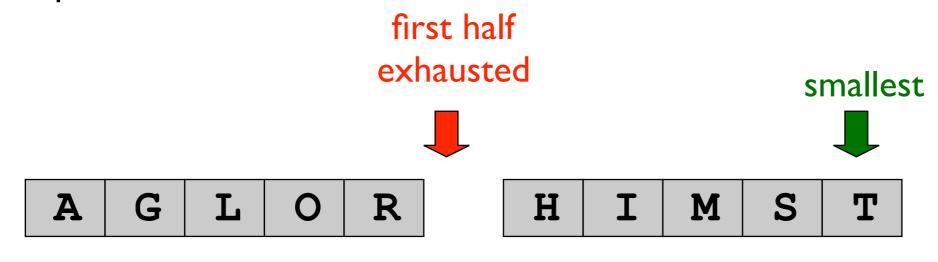
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



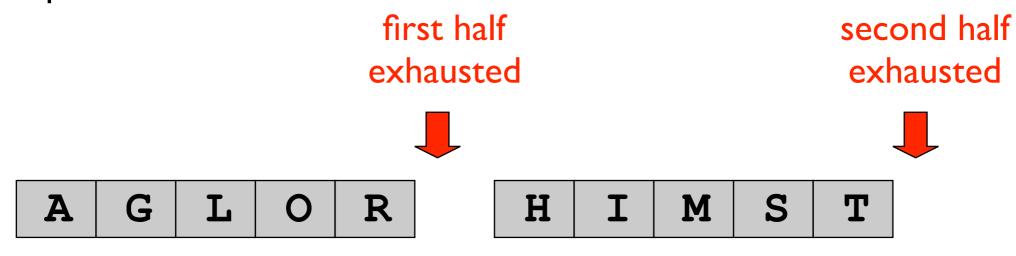
Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.



A G H I L M O R S T

Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

Solution. T(n) is $O(n log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Telescoping Proof

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. For n > 1:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$

$$\cdots$$

$$= \frac{T(n/n)}{n/n} + \underbrace{1 + \cdots + 1}_{\log_2 n}$$

$$= \log_2 n$$

Induction Proof

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. (by induction on k such that $n=2^k$)

- Base case: $n = 2^0 = 1$.
- Inductive hypothesis: $T(n) = T(2^k) = n \log_2 n$.
- Goal: show that $T(2n) = T(2^{k+1}) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

= $2n\log_2 n + 2n$
= $2n(\log_2(2n)-1) + 2n$
= $2n\log_2(2n)$

Generalized Induction Proof

Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

Pf. (by induction on n)

- Base case: $n = I.T(I) = 0 = I \lceil \lg I \rceil$.
- Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$. (note $1 \le n_1 < n$, $1 \le n_2 < n$)
- Induction step: Let $n \ge 2$, assume true for 1, 2, ..., n-1.

$$T(n) \leq T(n_1) + T(n_2) + n$$

$$\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$= n \lceil \lg n_2 \rceil + n$$

$$\leq n(\lceil \lg n \rceil - 1) + n$$

$$= n \lceil \lg n \rceil$$

$$n_{2} = \lceil n/2 \rceil$$

$$\leq \lceil 2^{\lceil \lg n \rceil} / 2 \rceil$$

$$= 2^{\lceil \lg n \rceil} / 2$$

$$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$

Winter 2016 COMP-250: Introduction to Computer Science

Lecture 10, February 11, 2016