Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture IO, February II, 2016

A Survey of Common Running Times

Linear Time: O(n)

Linear time. Running time is proportional to input size.
Computing the maximum. Compute maximum of n numbers a_{1}, \ldots, a_{n}.

```
max }\leftarrow\mp@subsup{\textrm{a}}{1}{
for i = 2 to n {
    if (ai}>>\operatorname{max}
        max}\leftarrow\mp@subsup{a}{i}{
}
```


Linear Time: O(n)

Merge. Combine two sorted lists $A=a_{1}, a_{2}, \ldots, a_{n}$ with $B=b_{1}, b_{2}, \ldots, b_{n}$ into a sorted whole.


```
i = 1, j = 1
while (both lists are nonempty) {
    if (a}\mp@subsup{i}{i}{}\leq\mp@subsup{b}{j}{\prime})\mathrm{ append }\mp@subsup{a}{i}{}\mathrm{ to output list and increment i
    else append }\mp@subsup{b}{j}{}\mathrm{ to output list and increment j
}
append remainder of nonempty list to output list
```

Claim. Merging two lists of size n takes $O(n)$ time.
Pf. After each comparison, the length of output list increases by I.

O(n log n) Time

$O(\mathrm{n} \log \mathrm{n})$ time. Arises in divide-and-conquer algorithms. also referred to as linearithmic time

Sorting. Mergesort and Heapsort are sorting algorithms that perform $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons.

Largest empty interval. Given n time-stamps x_{1}, \ldots, x_{n} on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n $\log \mathrm{n})$ solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: $O\left(n^{2}\right)$

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, find the pair that is closest.
$O\left(n^{2}\right)$ solution. Try all pairs of points.

Remark. This algorithm is $\Omega\left(\mathrm{n}^{2}\right)$ and it seems inevitable in general, but this is just an illusion.

Cubic Time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Cubic time. Enumerate all triples of elements.
Set disjointness. Given n sets S_{1}, \ldots, S_{n} each of which is a subset of $\mathrm{I}, 2, \ldots, \mathrm{n}$, is there some pair of these which are disjoint?
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ solution. For each pair of sets, determine if they are disjoint.

```
foreach set Si}
    foreach other set S S {
        foreach element p of Si
            determine whether p also belongs to }\mp@subsup{S}{j}{
        }
        if (no element of }\mp@subsup{S}{i}{}\mathrm{ belongs to }\mp@subsup{S}{j}{}\mathrm{ )
            report that S S and S S are disjoint
    }
}
```


Polynomial Time: $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$

Independent set of size \mathbf{k}. Given a graph, are there k nodes such that no two are joined by an edge?
k is a constant
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
    check whether S in an independent set
    if (S is an independent set)
        report S is an independent set
    }
}
```

- Check whether S is an independent set $=O\left(k^{2}\right)$.

- Number of k element subsets : $\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots(2)(1)} \leq \frac{n^{k}}{k!}$
- $O\left(k^{2} n^{k} / k!\right)$ is $O\left(n^{k}\right)$.

Polynomial Time: $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$

Independent set of size k . Given a graph, are there k nodes such that no two are joined by an edge?
k is a constant
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
    check whether S in an independent set
    if (S is an independent set)
        report S is an independent set
    }
}
```

- Check whether S is an independent set $=O\left(k^{2}\right)$.

- Number of k element subsets : $\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots(2)(1)} \leq \frac{n^{k}}{k!}$
- $O\left(k^{2} n^{k} / k!\right)$ is $O\left(n^{k}\right)$.

Exponential Time: $O\left(c^{n}\right)$

Independent set. Given a graph, what is the maximum size of an independent set?
$\mathrm{O}\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)$ solution. Enumerate all subsets.

```
S* \leftarrow \varnothing
foreach subset S of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far)
        update S* }
    }
}
```


Induction and Recursion

Induction Proofs

Predicate.

- $P(n): f(n)=$ some formula in n

Statement.
$\forall n \geq I, P(n)$ is true.
Proof.

- Base case: proof that $P(I)$ is true.
- Induction step: $\forall n \geq I, P(n) \Longrightarrow P(n+I)$.

Let $\mathrm{n} \geq 1$.
Assume for induction hypothesis that $P(n)$ is true and prove $\mathrm{P}(\mathrm{n}+\mathrm{I})$ is also true.

Induction Proof (I)

Predicate.

- $\mathrm{P}(\mathrm{n}): 1+2+\ldots+n=n(\mathrm{n}+\mathrm{I}) / 2$
- Base case: when $\mathrm{n}=\mathrm{I}$ we have

$$
\mathrm{I}+\ldots+\mathrm{n}=\mathrm{I}=\mathrm{I}(2) / 2=\mathrm{n}(\mathrm{n}+\mathrm{I}) / 2 .
$$

$P(I)$ is true.

- Induction step: let $\mathrm{n} \geq$ I. Assume for induction hypothesis that $P(n)$ is true. We show $\mathrm{P}(\mathrm{n}+\mathrm{I})$ is true as well :

$$
\begin{aligned}
& I+2+\ldots+n+(n+I)=n(n+I) / 2+(n+I) \text { by I.H. } \\
&=(n+I)(n / 2+1) \\
&=(n+I)(n+2) / 2 . \\
& n \geq I, P(n) \Rightarrow P(n+I) .
\end{aligned}
$$

Induction Proof (II)

Predicate. ${ }^{\text {n }}$

- $P(n): \sum_{i=1}^{n} i=n(n+1) / 2$
- Base case: when $n=I, \sum_{i=1}^{l} i=I=I(2) / 2=n(n+I) / 2$.
$P(I)$ is true.
- Induction step: let $\mathrm{n} \geq \mathrm{I}$. Assume for induction hypothesis that $\mathrm{P}(\mathrm{n})$ is true.
We show $\mathrm{P}(\mathrm{n}+\mathrm{I})$ is true as well :

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =(n+1)+\sum_{i=1}^{n} i \\
& =(n+1)+n(n+1) / 2 \text { by } I . H . \\
& =(n+1)(1+n / 2) \\
& =(n+1)(n+2) / 2 . \\
n \geq I, & P(n) \Longrightarrow P(n+1) .
\end{aligned}
$$

Iteration vs Recursion

- $f(n)=1+2+\ldots+n=\sum_{i=1}^{n} i$

```
f(n)
sum \leftarrow0
for i = 2 to n {
        sum }\leftarrow\mathrm{ sum + i
}
return sum
```

- $f(n)= \begin{cases}0 & \text { if } n=0 \\ f(n-I)+n & \text { if } n>0\end{cases}$

```
f(n)
if n = 0 { return 0 }
else { return f(n-1)+n }
```


Induction Proof (III)

Predicate.

- $P(n): f(n)=n(n+I) / 2$
- Base case: when $n=I, f(I)=I=I(2) / 2=n(n+I) / 2$.
$P(I)$ is true.
- Induction step: let $\mathrm{n} \geq \mathrm{I}$. Assume for induction hypothesis that $P(n)$ is true. We show $\mathrm{P}(\mathrm{n}+\mathrm{I})$ is true as well :

$$
\begin{array}{rlrl}
f(n+I) & =f(n)+(n+I) & \text { by definition } \\
& =n(n+I) / 2+(n+I) & \text { by l.H. } \\
& =(n+1)(n / 2+I) & \\
& =(n+1)(n+2) / 2 . & \\
n \geq I, & P(n) \Longrightarrow P(n+I) .
\end{array}
$$

Generalized Induction Proofs

Predicate.

- $P(n): f(n)=$ some formula in n

Statement.
For all $n \geq I, P(n)$ is true.
Proof.

- Base case: proof that $P(I)$ is true.
- Induction step: let $\mathrm{n} \geq 1$. Assume for induction hypothesis that $P(I) \ldots P(n)$ are all true. We show $P(n+I)$ is also true.

Recursion:

Fibonacci Sequence

$-f i b(n)= \begin{cases}n & \text { if } n \leq 1 \\ \text { fib(} n-I)+f i b(n-2) & \text { if } n>1\end{cases}$
Fibonacci sequence:

$$
0, I, I, 2,3,5,8,13,2 \mid, 34,55,89, I 44, \ldots
$$

- NOT so easy to define iteratively...

Recursion vs Iteration

- fib $(n)= \begin{cases}n & \text { if } n \leq I \\ \text { fib(} n-I)+f i b(n-2) & \text { if } n>I\end{cases}$

```
fib(n)
if n < 2 { return n }
else { return fib(n-1)+fib(n-2) }
```

```
fib (n)
a}\leftarrow
b}\leftarrow
for i = 1 to n {
    b}\leftarrowa+
    a}\leftarrow\textrm{b}-\textrm{a
}
return a
```


Generalized Induction Proofs

Statement.
For all $n \geq 0, P(n): f i b(n) \leq 2^{n}$ is true.
Proof.

- Base case: $P(0)$: fib $(0)=0 \leq 2^{0}$ is true.

$$
P^{\prime}(I)^{\prime}: f i b^{\prime}()^{\prime}=I \leq 2^{\prime} \text { is true. }
$$

- Induction step: let $\mathrm{n} \geq 1$. Assume for induction hypothesis that $P(0) \ldots P(n)$ are all true. We show $P(n+I)$ is also true:

$$
\begin{aligned}
\text { fib }(n+I) & =f i b(n)+f i b(n-I) & & \text { by definition } \\
& \leq 2^{n}+2^{n-1} & & \text { by gen. I. H. } \\
& \leq 2^{n-1} \cdot 3<2^{n+1} & &
\end{aligned}
$$

Generalized Induction Proofs

Statement.
For all $\mathrm{n} \geq \mathrm{I}, \mathrm{P}(\mathrm{n}): \operatorname{fib}(\mathrm{n}) \leq \varphi^{\mathrm{n}}$ is true.
Proof.

- Base case: $\mathrm{P}(\mathrm{I})$: fib(I) $=\mathrm{I} \leq \varphi^{\prime}$ is true (if $\varphi \geq \mathrm{I}$). $P(2)$: fib(2) $=I \leq \varphi^{2}$ is true (if $\varphi \geq I$).
- Induction step: let $\mathrm{n} \geq \mathrm{I}$. Assume for induction hypothesis that $P(1) \ldots P(n)$ are all true. We show $P(n+I)$ is also true:

$$
\begin{aligned}
\text { fib }(\mathrm{n}+\mathrm{I}) & =\mathrm{fib}(\mathrm{n})+\mathrm{fib}(\mathrm{n}-\mathrm{I}) \quad \text { by definition } \\
& \leq \varphi^{\mathrm{n}}+\varphi^{\mathrm{n}-1} \quad \text { by gen. I. H. } \\
& \leq \varphi^{n-1}(\varphi+\mathrm{I}) \leq \varphi^{\mathrm{n}+1} \\
& \text { whenever }(\varphi+I) \leq \varphi^{2} \\
& \text { whenever } 0 \leq \varphi^{2}-\varphi-I .
\end{aligned}
$$

Generalized Induction Proofs

Statement.
For all $n \geq I, P(n): f i b(n) \geq \varphi^{n-2}$ is true.
Proof.

- Base case: $\mathrm{P}(\mathrm{I})$: fib $(\mathrm{I})=\mathrm{I} \geq \varphi^{-1}$ is true (if $\varphi \geq \mathrm{I}$).
$P(2): f i b(2)=I=\varphi^{0}$ is true.
- Induction step: let $\mathrm{n} \geq \mathrm{I}$. Assume for induction hypothesis that $P(1) \ldots P(n)$ are all true. We show $P(n+I)$ is also true:

$$
\begin{aligned}
\text { fib }(\mathrm{n}+\mathrm{I}) & =\text { fib }(\mathrm{n})+\text { fib }(\mathrm{n}-\mathrm{I}) \quad \text { by definition } \\
& \geq \varphi^{n-2}+\varphi^{n-3} \quad \text { by gen. I.H. } \\
& \geq \varphi^{n-3}\left(\varphi^{+I}\right) \geq \varphi^{\mathrm{n}-1} \\
& \text { whenever }(\varphi+I) \geq \varphi^{2} \\
& \text { whenever } 0 \geq \varphi^{2}-\varphi-I .
\end{aligned}
$$

Weak Binet Formula

Statements. For all $\mathrm{n} \geq \mathrm{I}$, $\mathrm{fib}(\mathrm{n}) \leq \varphi^{\mathrm{n}}$ is true.
whenever $0 \leq \varphi^{2}-\varphi$-I and $\varphi \geq 1$.
For all $n \geq I, f i b(n) \geq \varphi^{n-2}$ is true. whenever $0 \geq \varphi^{2}-\varphi$-I and $\varphi \geq I$.

Therefore:
For all $\mathrm{n} \geq \mathrm{I}, \varphi^{\mathrm{n}} / \varphi^{2} \leq \mathrm{fib}(\mathrm{n}) \leq \varphi^{\mathrm{n}}$ is true.
whenever $0=\varphi^{2}-\varphi$ - I and $\varphi \geq 1$.
Only solution $\varphi=$ golden ratio $=(1+\sqrt{ } 5) / 2$.
$\mathrm{fib}(\mathrm{n})$ is $\boldsymbol{\theta}\left(\varphi^{\mathrm{n}}\right)$.

Generalized Induction Proofs

- $f(n)= \begin{cases}n & \text { if } n \leq 1 \\ f^{2}(n+1 / 2)+f^{2}(n-1 / 2) & \text { if odd } n>1 \\ f^{2}\left(n^{1 / 2}+1\right)-f^{2}(n / 2-1) & \text { if even } n>1\end{cases}$
f-sequence:

$$
0, I, I, 2,3,5,8, I 3,2 I, 34,55,89, I 44, \ldots
$$

Statement.
For all $n \geq 0, \quad f i b(n)=f(n)$.
Left as an exercise...

Recursive Algorithms

Merge Sort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

A	L	G	O	R	I	T	H	M	S

A	L	G	O	R

A	G	L	O	R

A	G	H	I	L	M	O	R	S	T

merge $O(n)$

Merge

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

A	G	H	I

Challenge for the bored. In-place merge. [Kronrod, I969]

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array

Merging

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merging

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

A	G	H	I	L	M	O			

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

A	G	H	I	L	M	O	R		

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
first half exhausted

smallest

A	G	H	I	L	M	O	R

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
first half exhausted

A	G	H	I	L	M	O	R	S

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
first half
exhausted

smallest
\square

\mathbf{H}	\mathbf{I}	\mathbf{M}	\mathbf{S}	\mathbf{T}

\mathbf{A}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{L}	\mathbf{M}	\mathbf{O}	R	\mathbf{S}	

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.
first half
exhausted

A	\mathbf{G}	\mathbf{L}	\mathbf{O}	\mathbf{R}

\mathbf{H}	\mathbf{I}	\mathbf{M}	\mathbf{S}	\mathbf{T}

A	G	H	I	L	M	O	R	S	T

Merge

Merging.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

second half exhausted

A	\mathbf{G}	\mathbf{L}	\mathbf{O}	\mathbf{R}

H	I	\mathbf{M}	\mathbf{S}	\mathbf{T}

A	G	H	I	L	M	O	R	S	T

Recurrence Relation

Def. $\mathrm{T}(\mathrm{n})=$ number of comparisons to mergesort an input of size n .

Mergesort recurrence.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Solution. $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=$.

Telescoping Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. For $\mathrm{n}>\mathrm{I}$:

$$
\begin{array}{rll}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n} & +1 \\
& =\frac{T(n / 2)}{n / 2}+1 \\
& =\frac{T(n / 4)}{n / 4} & +1+1 \\
& \cdots & \\
& =\frac{T(n / n)}{n / n} & +\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

Induction Proof

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on k such that $n=2^{k}$)

- Base case: $\mathrm{n}=2^{0}=1$.
- Inductive hypothesis: $T(n)=T\left(2^{k}\right)=n \log _{2} n$.
- Goal: show that $T(2 n)=T\left(2^{k+1}\right)=2 n \log _{2}(2 n)$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Generalized Induction Proof

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $\mathrm{n}=\mathrm{I} . \mathrm{T}(\mathrm{I})=0=\mathrm{I}\lceil\mathrm{Ig} \mathrm{I}\rceil$.
- Define $\mathrm{n}_{1}=\lfloor\mathrm{n} / 2\rfloor, \mathrm{n}_{2}=\lceil\mathrm{n} / 2\rceil$. (note $\mathrm{I} \leq \mathrm{n}_{1}<\mathrm{n}, \mathrm{I} \leq \mathrm{n}_{2}<\mathrm{n}$)
- Induction step: Let $n \geq 2$, assume true for $I, 2, \ldots, n-I$.

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\lg n_{1}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\lg n_{2}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& =n\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n(\lceil\lg n\rceil-1)+n \\
& =n\lceil\lg n\rceil
\end{aligned}
$$

$$
\begin{aligned}
n_{2} & =\lceil n / 2\rceil \\
& \leq\left\lceil 2^{\lceil\lg n\rceil} / 2\right\rceil \\
& =2^{\lceil\lg n\rceil} / 2 \\
\Rightarrow & \lg n_{2} \leq\lceil\lg n\rceil-1
\end{aligned}
$$

Winter 2016
 COMP-250: Introduction to Computer Science
 Lecture IO, February II, 2016

