
COMP 250 Winter 2016 3 – signed vs. unsigned, addresses, arrays Jan. 21, 2016

Today I will complete the discussion of binary numbers. Then I will move on and discuss arrays
and an algorithm for sorting which uses arrays. The discussion of arrays is a natural lead into the
next big topic, lists, which I will begin next lectures.

Unsigned vs. signed numbers

Consider 8 bit numbers (one byte). From what I said last lecture, these numbers would go from
0 to 255. In general, n-bit numbers would go from 0 to 2n − 1. Such a representation is called
unsigned since all the numbers are non-negative. It is illustrated by the figure below on the left.

Note that rather than showing a line of numbers, I have drawn the numbers on a circle. The
idea here is that if take (11111111)2 = 255 and you add 1, then you get (100000000)2 = 256 which is
has 9 bits rather than 8. If we only keep the “lower” 8 bits, then we have (00000000)2 = 0. Hence,
the circle.

To allow for negative numbers, one uses a different interpretation of the binary numbers, which is
illustrated in the figure below on the right. This is called the signed number representation. Here we
count from 0 up to 127 and then, rather than going to 128, we jump to -128. We continue counting
up from there to 0. Note that the leftmost bit (the “most significant bit” or MSB) indicates the
sign of the number. If the MSB is 0, then the number is non-negative. If the MSB is 1, then the
number is negative. Also, note that we are not simply using 7 bits for the number and then using
the eight bit for the sign. i.e. (10000001) represents the number -127, not -1.

More generally, the set of unsigned n-bit numbers are { 0, 1, 2, . . . , 2n − 1 }. It is common
to use n = 16, 32, 64 or 128, though any value of n is possible. The signed n-bit numbers are
{− 2n−1, . . . , 0, 1, 2, . . . , 2n−1 − 1 }.

Here is a table for n = 8 and n = 16.

c©Michael Langer (modified with permission) Updated: February 5, 201610

COMP 250 Winter 2016 3 – signed vs. unsigned, addresses, arrays Jan. 21, 2016

binary signed unsigned
00000000 0 0
00000001 1 1
: : :
01111111 127 127
10000000 -128 128
10000001 -127 129
: : :
11111111 -1 255

If n=16, the corresponding table is:

binary signed unsigned
0000000000000000 0 0
0000000000000001 1 1
: : :
0000000001111111 127 127
0000000010000000 128 128
0000000010000001 129 129
: :
0111111111111111 215 − 1 215 − 1
1000000000000000 −215 215

1000000000000001 −215 + 1 215 + 1
: :
1111111101111111 -129 216 − 129
1111111110000000 -128 216 − 128
1111111110000001 -127 216 − 127
: :
1111111111111111 -1 216 − 1

Funny example from Java

Consider the following lines of Java code:

for (short s = 32767; s < 32768; s++)

System.out.println(s);

The number 32767 is 215 − 1 and so it is the largest short. The code is a loop which starts with
this number, prints it, and then increments the number. The loop terminates when the value is
not less than 32768 which common sense tells you will occur after just one pass through the loop.
However, that is not what happens! When the program you write contains the number 32768, Java
treats this number as an int and this number can indeed be represented correctly as a (32 bit)
int. When Java adds 1 to the short value s=32767, it gets -32768. This value is less than 32768
obviously and so the program will print it and indeed it will print all the values from -32768 up to
32767, and then go through that loop infinitely many times. If you don’t believe me, try it yourself.
See Exercises 1 Question 10 for a few other examples.

c©Michael Langer (modified with permission) Updated: February 5, 201611

COMP 250 Winter 2016 3 – signed vs. unsigned, addresses, arrays Jan. 21, 2016

Unsigned numbers as memory addresses

Binary number representations are used in two ways. The first is to represent data. The second
is to represent an addresses in memory. Addresses are unsigned numbers. When you hear that
a computer is a “32 bit machine” this means that there are 232 addressable bytes. A “64 bit
machine” may access 264 bytes. Don’t be concerned for now about what this actually means in
terms of hardware. You’ll learn about that in COMP 273. For now, just think of possible addresses
of bytes in memory.

As as aside, just to remind you (or in case you didn’t know)...

• 210 bytes = 1 kilobyte (1 KB) ≈ 103 bytes (one thousand)

• 220 bytes = 1 megabyte (1 MB) ≈ 106 bytes (one million)

• 230 bytes = 1 gigabyte (1 GB) ≈ 109 bytes (one billion)

• 240 bytes = 1 terabyte (1 TB) ≈ 1012 bytes (one trillion)

• 250 bytes = 1 petabyte (1 PB) ≈ 1015 bytes

• 260 bytes = 1 exabyte (1 EB) ≈ 1018 bytes

The latter two seem like very large numbers. Indeed there are data sets (sometimes called “big
data”) with that many bytes.

You learned in COMP 202 that Java has primitive types and reference types. Each primitive
type in Java uses a certain number of bits (or bytes), namely boolean, byte, char, short,

int, long, float, double use 1,1,2,2,4,8,4,8, bytes respectively. A variable that is defined as a
primitive type just stands for a particular set of consecutive bytes of memory where some data is
stored.

Variables that have a reference type are different. These variables holds the address of an object,
in particular, the starting address of the object.

You should think of both primitive and reference variables as standing for an address in memory
where something is stored. The thing that is stored can either be data itself (in the case of a primitive
type), or it could be the starting address of some object (in the case of a reference type).

Note that sometimes I write starting address rather than just address. Why? In Java only
boolean and byte types use one byte. Everything else uses multiple bytes. When I say “starting
address”, I am just reminding you that the item being stored takes more than one byte, and the
address only refers to the first of these bytes.

Example

Suppose we define:

int i = 4;

double x = 47.35;

This defines 4 consecutive bytes somewhere in memory where the integer i is stored and 8 consec-
utive bytes where the double x is stored. Whenever your program subsequently has i or x, it is

c©Michael Langer (modified with permission) Updated: February 5, 201612

COMP 250 Winter 2016 3 – signed vs. unsigned, addresses, arrays Jan. 21, 2016

referring to these two sequences of bytes. We would say that the address of the integer i is the first
byte of the 4-byte sequence and the address of the double x is the first byte of the 8-byte sequence.

Now suppose we have defined a class Student, and we have an instruction

Student[] studentArray = new Student[13];

This is in fact two declarations

Student[] studentArray;

studentArray = new Student[13];

The first defines a reference variable which holds the address of an object, namely a Student

array. Until we construct the object, this address is null which is just the number 0. The second
line constructs/instantiates a Student array which references 13 students. These references are
initialized to null which is the address 0.

Next we instantiate objects of the class Student and use the array to reference them,

studentArray[0] = new Student("Fred");

studentArray[2] = new Student("Mustafa");

In this case, we would have a Student object which has some string field in it that is assigned
“Fred”. This Student object would have starting address which is stored the array slot 0 in the
Student array object.

The key concept to understand here is that any data – whether it is an int or a double or a
an array, or an object or an array of objects – is stored as a set of consecutive bytes in memory.
When we talk about the “address” of any particular data item, we are talking about the first of
these bytes. We will come back to these ideas throughout the course...

c©Michael Langer (modified with permission) Updated: February 5, 201613

