
COMP 250 Winter 2016 1 – grade school algorithms Jan. 12, 2016

Algorithms for addition and multiplication

Let’s try to remember your first experience with numbers, way back when you were a child in grade
school. In grade 1, you learned how to count up to ten and to do basic arithmetic using your fingers.
When doing so, you memorized sums of single digit numbers (4 + 7 = 11, 3 + 6 = 9, etc). Later
on in about grade 4, you learned a method for adding multiple digit numbers, which was based on
the single digit additions that you had memorized. For example, you were asked to compute things
like:

2343

+ 4519

????

The method that you learned was a sequence of computational steps, commonly called an
algorithm. What was the algorithm ? Let’s call the two numbers a and b and let’s say they have
N digits each. Then the two numbers can be represented as an array of single digit numbers a[]
and b[]. We can define a variable carry and compute the result in an array r[]. You know how
this works. You go column by column, adding the pair of single digit numbers in that column and
adding the carry (0 or 1) from the previous column. We can write the algorithm in pseudocode1 as
follows:

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are represented as
arrays of digits
carry = 0
for i = 0 to N − 1 do
r[i]← (a[i] + b[i] + carry) %10
carry ← (a[i] + b[i] + carry)/10

end for
r[N]← carry

The operator “%” is the “mod” operator. It computes the remainder of the division. The
operator “/” ignores the remainder, i.e. it rounds down the result of division (“rounding down” is
often called “taking the floor”). Of course, you did not know about the % and the / operators back
then, but simply n%10 means “take the rightmost digit of n” and n/10 means “take all but the
rightmost digit of n”, which you understood.

Also note that the above algorithm requires that you can compute (or look up in a table that
you have “memorized”) the sum of two single digit numbers with ’+’ operator, and also (possibly)
add 1 to that result.

Later on in grade school, you learned how to multiply two numbers. Again, you first memorized
a multiplication table for single digit numbers (e.g. 6 × 7 = 42). You then learned a sequence of
steps for multiplying a pair of N digit numbers. The algorithm is shown on the next page.

1 not code in a real programming language, but good enough for communicating between humans i.e. me and
you

c©Michael Langer (modified with permission) Updated: February 5, 20161

COMP 250 Winter 2016 1 – grade school algorithms Jan. 12, 2016

There are two stages to the algorithm. The first is to compute a 2D array whose rows contain
the first number a multiplied by the single digits of the second number b (times the corresponding
power of 10). The second stage is to add up the rows of this 2D array.

Note: in the example below, I have not shown various “carries” that were used to compute the
2D array and the final result.

352

x 964

1408

21120

316800

339328

Algorithm 2 Multiplication (base 10) of two numbers a and b

for j = 0 to N − 1 do
carry ← 0
for i = 0 to N − 1 do
prod← (a[i] ∗ b[j] + carry)
tmp[j][i+ j]← prod%10
carry ← prod/10

end for
tmp[j][N + j]← carry

end for
carry ← 0
for i = 0 to 2 ∗N − 1 do
sum← carry
for j = 0 to N − 1 do
sum← sum+ tmp[j][i]

end for
r[i]← sum%10
carry ← sum/10

end for
r[2 ∗N]← carry

Analysis of Algorithm

Let’s compare the addition and multiplication algorithms in terms of the number of operations
required. The addition algorithm involves a single for loop which is run N times. For each pass
through the loop, there is a fixed number of simple operations. There are also a few operations
that are performed outside the loop. We would say that the addition algorithm requires c1 + c2N
operations, i.e. a constant c1 plus a term that is proportional (with factor c2) to the number N of

c©Michael Langer (modified with permission) Updated: February 5, 20162

COMP 250 Winter 2016 1 – grade school algorithms Jan. 12, 2016

digits. We are ignoring the details that define c1 and c2 which have to do with the actual machine
implementation of the various instructions. (You will learn about this in COMP 273.)

We saw that the multiplication algorithm involves two components, each having a pair of for
loops, one inside the other. This “nesting” of loops leads to N2 passes through the operations
within the inner loop. For each pass, there are various basic operations performed.

Suppose we consider the first component, in which we produce the two dimensional matrix tmp.
Suppose some number (say c3) of operations are inside both for loops, some number (say c4) of
operations are inside just one of the for loops, and some number (say c5) of operations are outside
both for loops. Then the number of operations is c5 + c4N + c3N

2. The same argument would
apply for the second step of the multiplication algorithm, since again we have two nested for loops.

To summarize, the number of operations taken by the addition and multiplication algorithms
depends both on the c values as well as on the number of digits N . It is very important to realize
that, for large N , multiplication requires far more operations than additions since N2 will dominate
over N , regardless of the particular values of the c’s.

Let’s next consider the space that is required to perform the above algorithms. The addition
algorithm used arrays a[], b[], r[] which are each of size N so the space required grows as N . The
multiplication algorithm used a 2D array tmp[][] which grows as N2. When N is very large, the
space requirements would be significant. Can this be avoided? Yes, it can.

Rather than making a 2D table and then summing up the rows after the table is constructed,
you could build the rows one at a time and use the r[] vector to acculumate the sum as you build
the rows. Once a row has been added to the sum, there is no reason to keep it around. Notice
that this does not speed up the algorithm. The total number of operations still grows as N2, since
you ultimately are adding up N rows which each have N digits but you are saving significantly on
space. However, you will learn later that it is possible to multiply two numbers of N digits each in
time N δ for any 1 < δ < 2... That’s a rather big surprize !

Subtraction

In grade school, you also learned how to perform subtraction. Subtraction was more difficult to learn
than addition since you needed to learn the trick of borrowing, which is the opposite of carrying.
In the example below, you needed to write down the result of 2-5, but this is a negative number
and so instead you change the 9 to an 8 in the first number and you change the 2 to a 12, then
compute 12-5=7 and write down the 7.

924

- 352

572

This “borrowing” trick is straightforward (easy to say now!). In Assignment 1, you will be asked
to code up an algorithm for doing this.

Long Division

The last basic arithmetic operation you learned in grade school was long division. Suppose you
want to compute 41672542996 / 723. Again you learned a method for doing this.

c©Michael Langer (modified with permission) Updated: February 5, 20163

COMP 250 Winter 2016 1 – grade school algorithms Jan. 12, 2016

5 ...

723 | 41672542996

3615

552 ...

In the example above, you asked yourself, does 723 divide into 416? No. So, then you figure out
how many times 723 divides into 4167. The answer is 5. You multiply 723 by 5 and then subtract
this from 4167, etc, etc.

Why does this work? How would you write it down as an algorithm? (In Assignment 1, you
will be required to code it up.)

Arithmetic in other bases?

You are used to representing positive integers in base 10, that is, as a sum of powers of 10. But
there is nothing special about the number 10. In principle, you can represent positive integers as
the sum of numbers in any base.

Let’s consider a few examples of representing numbers in base 8, that is, as a sum of powers of
8. So,

(a[N − 1] · · · a[2] a[1] a[0])8 = a[N − 1] ∗ 8N−1 + · · ·+ a[2] ∗ 82 + a[1] ∗ 8 + a[0]

where the a[i] are all in { 0, 1, 2, · · · , 7}. For example,

(736)8 = 7 ∗ 82 + 3 ∗ 8 + 6 = (478)10

and
(1205)8 = 1 ∗ 83 + 2 ∗ 82 + 0 ∗ 8 + 5 = (645)10.

The addition and multiplication algorithms we saw earlier work similarly as before. See if you
can carry out the following sum and product of two numbers which are written in base 8. (Note:
For technical reasons having to do with a typesetting hassle, I have not put the subscript 8 below
which indicates base 8. But you should consider it there whenever parentheses are used!)

(1205) (1205)

+ (736) * (736)

------- -------

(2143) 1123 in base 10. (7436)

(36170)

(1064300)

(1132126) 308310 in base 10.

c©Michael Langer (modified with permission) Updated: February 5, 20164

