Computer Science COMP-102B
 Midterm, Feb 19, 2008,08:35-09:55. OPEN•BOOKS••OPEN•NOTES

1) a) How many CDs can we store on a double layer Blu-Ray disc ?
b) What is the binary representation of the integer 377 ?
c) What number has (32 bits) floating point representation

10010101010101010010101101010110 ?
d) In the internet section we saw two notations to extract the network address from an arbitrary IP address. We saw an example with both notations: "/19" and network mask "255.255.224.0". Explain how these two notations are equivalent and what they mean.
e) My computer has an Ethernet Address of 00:1B:63:C4:08:4E Please write the binary equivalent of this address.
2) a) Remember the algorithms we saw in class for finding minimum and sorting:

```
Procedure FindMin( }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots..\mp@subsup{x}{n}{}
mini:=1; min:=\mp@subsup{x}{1}{}
for i:=2 to n do
    if }\mp@subsup{x}{i}{}<min then min:=\mp@subsup{x}{i}{}; mini:=
output mini
```

```
input \(x_{1} x_{2} x_{3} \ldots x_{n}\)
for \(i:=1\) to \(n-1\) do
    \(j:=i-1+\) Find Min \(\left(x_{i} x_{i+1} \ldots x_{n}\right)\)
    temp:=\(x_{i} ; x_{i}:=x_{j} ; x_{j}:=\) temp
output \(x_{1} x_{2} x_{3} \ldots x_{n}\)
```

Simulate the execution of the sorting algorithm on input ($x_{1}=5 \quad x_{2}=2 \quad x_{3}=1$), including all executions of FindMin.
b) In the above algorithm for sorting I wrote explicitly the instructions for swapping two variables X_{i}, X_{j} as follows:

$$
\text { temp }:=x_{i} ; x_{i}:=x_{j} ; x_{j}:=\text { temp }
$$

This way of swapping uses an extra variable temp to store the first value while we replace it with the second. The following instructions swap without an extra variable

$$
x_{i}:=x_{i}+x_{j} ; \quad x_{j}:=x_{i}-x_{j} ; x_{i}:=x_{i}-x_{j}
$$

Explain why this works and find some disadvantage to swapping this way.
3) Remember the following algorithm from HW2 :

```
Input T, x }\mp@subsup{x}{2}{
Ti:=0
for i:=1 to n do
    if T=xi then Ti:=i
output Ti
```

Rewrite this algorithm recursively so that it terminates as soon as an occurrence of T is found (return the first occurrence not the last as in the above algorithm), but of course still returns 0 if no occurrence is found.
4) Remember the algorithm we saw in class for adding two sequences of numbers base B :

```
input \(B, x_{n} x_{n-1} \ldots x_{0}, y_{n} y_{n-1} \ldots y_{0}\)
carry:=0
for \(i:=0\) to \(n\) do
    Bigit:= \(x_{i}+y_{i}+c a r r y\)
    if Bigit \(\geq B\) then \(z_{i}:=\) Bigit- \(B\); carry:=1
    else \(z_{i}:=\) Bigit; carry:=0
\(z_{n+1}\) :=carry
output \(z_{n+1} z_{n} z_{n-1} \ldots z_{0}\)
```

a) Why does it make sense to use operations like + and - in an algorithm supposed to implement addition?
b) Argue that if we assign Bigit:= $x_{i}+y_{i}+c$ arry where x_{i}, y_{i} are less than B and that carry ≤ 1 then Bigit $<2 B$ which in turns imply $-B<\left(z_{i}:=B i g i t-B\right)<B$.
c) Simulate this algorithm with inputs $B=5, x_{1}=4, x_{0}=3, y_{1}=3, y_{0}=2$.

