COMP 102A 2014, Assignment 3 Due Wednesday November $12^{\text {th }} 2014$

[30\%]

1. We know that the Post Correspondence Problem cannot be solved in general by any algorithm. Here is a few facts about variations on PCP:

* PCP is decidable if we restrict the strings to come from an alphabet with a single symbol (ex: $\sum=\{a\}$),
* PCP is decidable if we restrict the tile set to contain only two tiles (ex: (ab/aaa), (aa/bb)).

Show that if we restrict PCP according to both of these constraints, "the strings come from an alphabet with a single symbol" and "the tile set contains only two tiles", then it is decidable (ex: (aa/aaa), (aa/aa)). Give an explicit algorithm that decides whether a two-tile input $\left(u_{1} / v_{1}\right),\left(u_{2} / v_{2}\right)$, where $u_{1}, v_{1}, u_{2}, v_{2}$ are strings of a 's, form a positive or negative instance of PCP. (|s| tells you the number of symbols of a string as s.length in JAVAscript.)

JAVAscript

[30\%]
2. Write a JAVAscript function sort that inputs a string \mathbf{w} and outputs another string \mathbf{z} such that if you consider the characters of \mathbf{z} they are the same as those of \mathbf{w}, but in alphabetical order.

Example:
sort("aviation") should output the string "aaiinotv".

Your function should work for arbitrarily long strings. We don't care what happens if the input is not of the right format. A few examples will be made available to you. Your function should be executed on these inputs and return the correct outputs.
> [40\%]
> 3. Write two JAVAscript functions Eotp (resp. Dotp) that inputs two strings $\mathbf{m , k}$ (resp. c,k) and outputs another string \mathbf{c} (resp. m) such that if you consider the characters of \mathbf{m}, \mathbf{k} and \mathbf{c}, we have the relation $\mathbf{c}[\mathbf{i}]=\mathbf{m}[\mathbf{i}]+\mathbf{k}[\mathbf{i}]$ where the sum is interpreted that "A" corresponds to 0 , " B " corresponds to $1, \ldots$, " Z " corresponds to 25 , and addition is modulo 26 . All of $\mathbf{c}, \mathbf{k}, \mathbf{m}$ are strings made of capital letters only. Dotp is the inverse of Eotp computing $\mathbf{m}[\mathbf{i}]=\mathbf{c}[\mathbf{i}]-\mathbf{k}[\mathbf{i}]$.

```
Example:
Eotp(
"VERNAMINVENTEDTHEONETIMEPAD",
"ABCDEFGHIJKLMNOPQRSTUVWXYZA")
```

should output the string
c="VFTOEROUDNXEQOHWUFFXNDIBNZD"
which is the One-time-pad sum of the value m encrypted by key \mathbf{k}. Your functions should work for arbitrarily long strings. We don't care what happens if the inputs are not of the right format. A few examples will be made available to you. Your functions should be executed on these inputs and return the correct outputs.

