COMP 102B 2014, Assignment 2
 Due Wednesday October 15 ${ }^{\text {th }} 2014$

1
 . Product of numbers

[20\%]

Write a JAVAscipt function Prod() that receives an arbitrary amount of numbers and returns their product. For example, if you type show($\operatorname{Prod}(2,3,4,5)$), you should receive 120 (which is $2 * 3 * 4 * 5$). If no argument is given $(\operatorname{Prod}())$, the output should be 1 .

2 . Min and Max

Consider the algorithm seen in class to find the location of the Minimum element:

Procedure FindMin $\left(x_{1} x_{2} \ldots x_{n}\right)$

mini:=1; min:=x1
for $\mathrm{i}:=2$ to n do
if $x_{i}<m i n$ then $m i n:=x_{i}$; mini $:=i$
output mini
a) Argue that the comparison of elements in the if statement occurs n-1 times in total.
b)Rewrite this algorithm as FindMax so to find the location of the Maximum instead of the Min.
c) Write a new algorithm that finds BOTH the Min and the Max using at most $3 \mathrm{n} / 2$ comparisons.

3. Mystery algorithm

Consider the following algorithm :
Input $T, x_{1} x_{2} \ldots x_{n}$ $\mathrm{Ti}:=0$

$$
\text { for } i:=1 \text { to } n \text { do }
$$

```
    if T=\mp@subsup{x}{i}{}}\mathrm{ then Ti:=i
```


output Ti

a)Run this algorithm on inputs $T=3, x_{1}=2, x_{2}=5, x_{3}=3$, and provide a complete trace of execution.
b)Describe in words, what this algorithm is doing. (clarify what happens when some $x_{i}{ }^{\prime} s$ are identical)
c) What is to be understood when the output is 0 ?

4. JAVAscript addition

[20\%]
Write a JAVAscript function add that inputs two strings \mathbf{x}, \mathbf{y} and output another string \mathbf{z} such that if you consider the numerical value of the characters of \mathbf{x} and similarly for \mathbf{y} and \mathbf{z}, we have the relation $\mathbf{z}=\mathbf{x}+\mathbf{y}$.

Example:
add (
" 500000000303030303033030303000000000333333333333 "
, "50000000030303030303303030300000000033333333333333")
should output the string
$z=" 1000000000606060606066060606000000000666666666666 "$
which is the numerical sum of the values represented by \mathbf{x} and \mathbf{y}. Your function should work for arbitrarily long numbers. We don't care what happens if the inputs are not of the right format. A few examples will be made available to you. Your function should be executed on these inputs and return the correct output.

[20\%] 5 . Multiplication

Write an algorithm to multiply two numbers (base 10) of n digits each and output a number of 2 n digits:

$$
x_{n} x_{n-1} \ldots x_{1} * y_{n} y_{n-1} \ldots y_{1}=z_{2 n} z_{2 n-1} z_{2 n-2} \ldots z_{1} .
$$

