COMP 102B 2014, Assignment 2 Due Wednesday October 15th 2014

1. Product of numbers

[20%]

Write a JAVAscipt function Prod() that receives an arbitrary amount of numbers and returns their product. For example, if you type show(Prod(2,3,4,5)), you should receive 120 (which is 2*3*4*5). If no argument is given (Prod()), the output should be 1.

2. Min and Max

Consider the algorithm seen in class to find the location of the Minimum element:

[25%]

```
Procedure FindMin(x_1x_2...x_n)
```

mini:=1; min:=x₁

for i:=2 to n do

if xi<min then min:=xi; mini:=i

output mini

a) Argue that the comparison of elements in the **if** statement occurs **n-1** times in total.

- b) Rewrite this algorithm as **FindMax** so to find the location of the Maximum instead of the Min.
- C) Write a new algorithm that finds BOTH the Min and the Max using at most 3n/2 comparisons.

3. Mystery algorithm

Consider the following algorithm:

```
[15%]
```

```
Input T,x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub>
Ti:=0
for i:=1 to n do

if T=x<sub>i</sub> then Ti:=i
```

output Ti

- a) Run this algorithm on inputs $T=3,x_1=2,x_2=5,x_3=3$, and provide a complete trace of execution.
- b) Describe in words, what this algorithm is doing. (clarify what happens when some x_i 's are identical)
- **c)**What is to be understood when the output is 0?

4. JAVAscript addition

[20%]

Write a JAVAscript function **add** that inputs two strings \mathbf{x} , \mathbf{y} and output another string \mathbf{z} such that if you consider the numerical value of the characters of \mathbf{x} and similarly for \mathbf{y} and \mathbf{z} , we have the relation $\mathbf{z} = \mathbf{x} + \mathbf{y}$.

```
Example:
```

should output the string

which is the numerical sum of the values represented by **x** and **y**. Your function should work for arbitrarily long numbers. We don't care what happens if the inputs are not of the right format. A few examples will be made available to you. Your function should be executed on these inputs and return the correct output.

[20%] 5. Multiplication

Write an algorithm to multiply two numbers (base 10) of n digits each and output a number of 2n digits:

$$x_n x_{n-1}...x_1 * y_n y_{n-1}...y_1 = z_{2n} z_{2n-1} z_{2n-2}...z_1.$$