COMP 102A, Lecture 12

Computability and Complexity

COMP 102A, Lecture 12

German mathematician David Hilbert presented ten problems in mathematics from a list of 23 (1, 2, 6, 7, 8, 13, 16, 19, 21 and 22).

- German mathematician David Hilbert presented ten problems in mathematics from a list of 23 (1, 2, 6, 7, 8, 13, 16, 19, 21 and 22).
- Speaking on 8 August 1900, at the Paris 2nd International Congress of Mathematicians, at La Sorbonne. The full list was published later.

- German mathematician David Hilbert presented ten problems in mathematics from a list of 23 (1, 2, 6, 7, 8, 13, 16, 19, 21 and 22).
- Speaking on 8 August 1900, at the Paris 2nd International Congress of Mathematicians, at La Sorbonne. The full list was published later.
- The problems were all unsolved at the time, and several of them turned out to be very influential for 20th century mathematics.

© Can we prove all the mathematical statements that we can formulate? (Hilbert's 2nd problem)

- © Can we prove all the mathematical statements that we can formulate? (Hilbert's 2nd problem)
- © Certainly, there are many mathematical problems that we do not know how to solve.

- © Can we prove all the mathematical statements that we can formulate? (Hilbert's 2nd problem)
- © Certainly, there are many mathematical problems that we do not know how to solve.
- Is this just because we are not smart enough to find a solution?

- © Can we prove all the mathematical statements that we can formulate? (Hilbert's 2nd problem)
- Certainly, there are many mathematical problems that we do not know how to solve.
- Is this just because we are not smart enough to find a solution?
- Or, is there something deeper going on?

computer science version of these questions

computer science version of these questions

If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to solve this problem in an efficient manner ???

computer science version of these questions

- If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to solve this problem in an efficient manner ???
- Are there some problems that cannot be solved at all? and, are there problems that cannot be solved efficiently?? (related to Hilbert's 10th problem)

Kurt Gödel

Kurt Gödel

In 1931, he proved that any formalization of mathematics contains some statements that cannot be proved or disproved.

Alan Turing

Alan Turing

In 1934, he formalized the notion of decidability of a language by a computer.

 \odot Let Σ be a finite alphabet. (ex: $\{0,1\}$)

- \odot Let Σ be a finite alphabet. (ex: $\{0,1\}$)
- \bullet Let Σ^* be all sequences of elements from this alphabet. (ex: 0, 1, 00000, 0101010101,...)

- \odot Let Σ be a finite alphabet. (ex: $\{0,1\}$)
- \bullet Let Σ^* be all sequences of elements from this alphabet. (ex: 0, 1, 00000, 0101010101,...)
- \odot A language L is any subset of Σ^* .

- \odot Let Σ be a finite alphabet. (ex: $\{0,1\}$)
- \bullet Let Σ^* be all sequences of elements from this alphabet. (ex: 0, 1, 00000, 0101010101,...)
- \odot A language L is any subset of Σ^* .
- An algorithm decides a language if it answers Yes when x is in L and No otherwise

All languages

All languages

All languages

All languages

languages that we can <u>decide</u>

All languages

that we can decide

Alonzo Church

Alonzo Church

In 1936, he proved that certain <u>languages</u> cannot be <u>decided</u> by any algorithm whatsoever...

Emil Post

Emil Post

In 1946, he gave a very natural example of an <u>undecidable</u> language...

(PCP) Post Correspondence Problem

(PCP) Post Correspondence Problem

aaa a bbb aa bb b

An instance of PCP with 6 tiles.

(PCP) Post Correspondence Problem

```
aaa a bbb aa bb b
```

- An instance of PCP with 6 tiles.
- A solution to PCP

```
aaa a bbb aa bb b
```

- An instance of PCP with 6 tiles.
- A solution to PCP

aa a

- An instance of PCP with 6 tiles.
- A solution to PCP

aa bbb a a

- An instance of PCP with 6 tiles.
- A solution to PCP

- An instance of PCP with 6 tiles.
- A solution to PCP

aa	bbb	b	
a	a		bb

- An instance of PCP with 6 tiles.
- A solution to PCP

aa	bbb	b		
a	a		bb	bb

 U1
 U2
 U3

 V1
 V2
 V3

 Un
 Un

 Vn
 Vn

© Given n tiles, u_1/v_1 ... u_n/v_n where each u_i or v_i is a sequence of letters.

 U1
 U2
 U3

 V1
 V2
 V3

 Un
 Vn

- © Given n tiles, u_1/v_1 ... u_n/v_n where each u_i or v_i is a sequence of letters.
- Is there a k and a sequence ⟨i₁,i₂,i₃,...,i_k⟩
 (with each 1≤i₁≤n) such that

 $u_{i1} | u_{i2} | u_{i3} | ... | u_{ik} = v_{i1} | v_{i2} | v_{i3} | ... | v_{ik}$?

 U1
 U2
 U3

 V1
 V2
 V3

u_n

A solution is of this form: with the top and bottom strings identical.

A solution is of this form: with the top and bottom strings identical.

Theorem:

The Post Correspondence Problem cannot be **decided** by any algorithm (or computer program). In particular, no algorithm can identify in a finite amount of time the instances that have a negative outcome. However, if a solution exists, we can find it.

Proof:

Reduction technique – if PCP was decidable then another undecidable problem would be decidable.

Notice that an algorithm is a piece of text.

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.
- An algorithm can receive an algorithm as input.

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.
- An algorithm can receive an algorithm as input.
- The Halting Problem:

 Given two texts A,B, consider A as an algorithm and B as an input. Will algorithm A halt (as opposed to loop forever) on input B?

Theorem: no algorithm can decide the Halting Problem.

- Theorem: no algorithm can decide the Halting Problem.
- Proof: Assume for a contradiction that an algorithm Halt(A,B) exists to decide the Halting Problem.

Consider the Algorithm:

```
Bug(A)
if Halt(A,A) then While True do
{ when Halt(A,A) is true then Bug(A) loops }
{ when Halt(A,A) is false then Bug(A) halts }
```

Consider the Algorithm:

```
Bug(A)
if Halt(A,A) then While True do
{ when Halt(A,A) is true then Bug(A) loops }
{ when Halt(A,A) is false then Bug(A) halts }
```

Question: What is the outcome of Bug(Bug)?

If Bug(Bug) does not loop forever it is because Halt(Bug,Bug)=False which means Bug(Bug) loops forever. (contradiction)

- If Bug(Bug) does not loop forever it is because Halt(Bug,Bug)=False which means Bug(Bug) loops forever. (contradiction)
- If Bug(Bug) loops forever it is because Halt(Bug,Bug)=True which means Bug(Bug) does not loop forever. (contradiction)

- If Bug(Bug) does not loop forever it is because Halt(Bug,Bug)=False which means Bug(Bug) loops forever. (contradiction)
- If Bug(Bug) loops forever it is because Halt(Bug,Bug)=True which means Bug(Bug) does not loop forever. (contradiction)
- Conclusion: Halt cannot exist.

The Halting Problem and PCP

The Halting Problem and PCP

Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem.

The Halting Problem and PCP

- Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem.
- Conclusion: PCP cannot be decided either.

Computability Theory

Computability Theory

All languages

Computability Theory

All languages

languages
that we can
describe

Computability Theory

All languages

languages
that we can
describe

languages that we can decide

COMP 102A 2013

Decidable? Some times we just don't know...

COMP 102A 2013

For any integer n>0 define the following sequence:

$$S_{i}=0$$
 $S_{i}/2$ if S_{i} is even, $S_{i}=0$ $S_{i+1}=0$ $S_{i}+1$ if S_{i} is odd.

For any integer n>0 define the following sequence:

$$S_{i}=n, S_{i+1}=\begin{cases} S_{i}/2 & \text{if } S_{i} \text{ is even,} \\ 3S_{i}+1 & \text{if } S_{i} \text{ is odd.} \end{cases}$$

Syracuse(n)= least i s.t. $S_1=n,...,S_i=1$ O if $S_i\neq 1$ for all i.

For any integer n>0 define the following sequence:

sequence:
$$S_{i}/2 \quad \text{if } S_{i} \text{ is even,} \\ S_{1}=n, \ S_{i+1}= \begin{cases} S_{i}/2 & \text{if } S_{i} \text{ is even,} \\ 3S_{i}+1 & \text{if } S_{i} \text{ is odd.} \end{cases}$$

Syracuse(n)= $\begin{cases} least i s.t. S_1=n,...,S_i=1 \\ 0 if S_i \neq 1 for all i. \end{cases}$

Example: Syracuse(9) = 20

- Example: Syracuse(9) = 20
- $S_{1}=9$, $S_{2}=28$, $S_{3}=14$, $S_{4}=7$, $S_{5}=22$, $S_{6}=11$, $S_{7}=34$, $S_{8}=17$, $S_{9}=52$, $S_{10}=26$, $S_{11}=13$, $S_{12}=40$, $S_{13}=20$, $S_{14}=10$, $S_{15}=5$, $S_{16}=16$, $S_{17}=8$, $S_{18}=4$, $S_{19}=2$, $S_{20}=1$

For all n that we have computed so far, Syracuse(n) > 0.

- For all n that we have computed so far, Syracuse
- Conjecture

for all n>0, Syracuse(n)>0

- For all n that we have computed so far, Syracuse
- © Conjecture

for all n>0, Syracuse(n)>0

If there exists N such that Syracuse(N) = 0 we might not be able to prove it.

The Syracuse conjecture is believed to be true but no proof of that statement was discovered so far. It is an **open** problem.

- The Syracuse conjecture is believed to be true but no proof of that statement was discovered so far. It is an **open** problem.
- Even worse, it might be decidable but there might be no proof that it is !!!

Complexity and Tractability

COMP 102A, Lecture 13

Not all problems were born equal...

Not all problems were born equal...

Is it possible to paint a colour on each region of a map so that no neighbours are of the same colour?

Obviously, yes, if you can use as many colours as you like...

2 colouring problem

3 colouring problem

4 colouring problem

K-colouring of Maps (planar graphs)

K-colouring of Maps (planar graphs)

K=1, only the map with zero or one region are 1-colourable.

K-colouring of Maps (planar graphs)

- K=1, only the map with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.

K-colouring of Maps (planar graphs)

- K=1, only the map with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.

K-colouring of Maps (planar graphs)

- K=1, only the map with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.
- K≥4, all maps are K-colourable. (hard proof)
 Does not imply easy to find a K-colouring.

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given,
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to MANY similar problems!

SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.
- KnapSack: given items with various weights, is there of subset of them of total weight K.

Many practical problems are NP-complete.

- Many practical problems are NP-complete.
- Some books list hundreds of such problems.

- Many practical problems are NP-complete.
- Some books list hundreds of such problems.
- If any of them is easy, they are all easy.

- Many practical problems are NP-complete.
- Some books list hundreds of such problems.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.

2-colorability of maps.

- 2-colorability of maps.
- Primality testing.

- 2-colorability of maps.
- Primality testing.
- Solving NxNxN Rubik's cube.

- 2-colorability of maps.
- Primality testing.
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.

- 2-colorability of maps.
- Primality testing.
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.
- Sorting elements.

Fortunately, many practical problems are tractable. The name P stands for Polynomial—Time computable.

- Fortunately, many practical problems are tractable. The name P stands for Polynomial—Time computable.
- © Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.

- Fortunately, many practical problems are tractable. The name P stands for Polynomial—Time computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

2-colorability of maps. O(n) time

- 2-colorability of maps. O(n) time
- Primality testing. O(n⁶) time

- 2-colorability of maps. O(n) time
- Primality testing. O(n⁶) time
- Solving NxNxN Rubik's cube. O(N²/log N) time

- 2-colorability of maps. O(n) time
- Primality testing. O(n⁶) time
- Solving NxNxN Rubik's cube. O(N²/log N) time
- Finding a word in a dictionary. O(log N) time

- 2-colorability of maps. O(n) time
- Primality testing. O(n⁶) time
- Solving NxNxN Rubik's cube. O(N²/log N) time
- Finding a word in a dictionary. O(log N) time
- Sorting elements. O(N log N) time

Decidable Languages

Decidable Languages

NP

Decidable Languages

NP

P

Decidable Languages

Decidable Languages

P = NP ?

Beyond NP-Completeness

Beyond NP-Completeness

P-Space Completeness: problems that require a reasonable (Poly) amount of **space** to be solved but may use very long time though.

Beyond NP-Completeness

- P-Space Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them may be solved within reasonable (Poly) amount of time, then all of them can.

P-Space Completeness

P-Space Completeness

Geography Game:

Given a set of country names: Afghanistan, Algeria, Canada, France, Japan, North Korea.

P-Space Completeness

Geography Game:

Given a set of country names: Afghanistan, Algeria, Canada, France, Japan, North Korea.

A two player game: One player chooses a name. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Generalized Geography

Generalized Geography

Given an arbitrary set of names: w₁, ..., w_n.

Generalized Geography

- Given an arbitrary set of names: w₁, ..., w_n.
- Is there a winning strategy for the first player to the previous game?

Complexity Theory

Decidable Languages

complete

P-Space

NP

P

Complexity Theory

Decidable Languages

P-Space

NP

P

NP = P-Space?

© Challenges of TCS:

- Challenges of TCS:
- FIND efficient solutions to many problems.

- © Challenges of TCS:
- FIND efficient solutions to many problems.
- PROVE that certain problems are NOT computable within a certain time or space. (With applications to cryptography)

- © Challenges of TCS:
- FIND efficient solutions to many problems.
- PROVE that certain problems are NOT computable within a certain time or space. (With applications to cryptography)
- Consider new models of computation. (Such as a Quantum Computer)

Afghanistan

Albania

Afghanistan 2

Albania 2

Albania 3

Albania 4

Algeria

Andorra

Andorra 2

Angola

Angola 2

Antigua and Barbuda

Antigua and Barbuda 2

Argentina

Armenia

Armenia 2

Australia

Australia 2

Australia 3

Austria

Austria 2

Azerbaijan

Azerbaijan 2

Bahamas, The

PCP with constraints

- \circ input (a^{n_1}/a^{m_1}) , (a^{n_2}/a^{m_2})
- \circ find $k_1, k_2 \ge 0$ s.t. $k_1 n_1 + k_2 n_2 = k_1 m_1 + k_2 m_2$
- \circ find $k_1,k_2 \ge 0$ s.t $k_1(n_1-m_1)=k_2(m_2-n_2)$
- \circ if $n_1=m_1$ then set $k_1=1$, $k_2=0$
- \odot else if $n_2=m_2$ then set $k_1=0$, $k_2=1$
- else if $(n_1-m_1)(n_2-m_2)<0$ then set $k_1=|n_2-m_2|, k_2=|n_1-m_1|$
- else no solution exists