COMP 102A, Lecture 12

Computability and Complexity
 COMP 102A, Lecture 12

Paris, 1900

Paris, 1900

- German mathematician David Hilbert presented ten problems in mathematics from a list of 23 ($1,2,6,7,8,13,16,19,21$ and 22).

Paris, 1900

- German mathematician David Hilbert presented ten problems in mathematics from a list of 23 ($1,2,6,7,8,13,16,19,21$ and 22).
- Speaking on 8 August 1900, at the Paris $2^{\text {nd }}$ International Congress of Mathematicians, at La Sorbonne. The full list was published later.

Paris, 1900

- German mathematician David Hilbert presented ten problems in mathematics from a list of 23 ($1,2,6,7,8,13,16,19,21$ and 22).
- Speaking on 8 August 1900, at the Paris $2^{\text {nd }}$ International Congress of Mathematicians, at La Sorbonne. The full list was published later.
- The problems were all unsolved at the time, and several of them turned out to be very influential for $20^{\text {th }}$ century mathematics.

Fundamental question?

Fundamental question?

- Can we prove all the mathematical statements that we can formulate ? (Hilbert's $2^{\text {nd }}$ problem)

Fundamental question?

- Can we prove all the mathematical statements that we can formulate ? (Hilbert's $2^{\text {nd }}$ problem)
- Certainly, there are many mathematical problems that we do not know how to solve.

Fundamental question?

- Can we prove all the mathematical statements that we can formulate? (Hilbert's $2^{\text {nd }}$ problem)
- Certainly, there are many mathematical problems that we do not know how to solve.
- Is this just because we are not smart enough to find a solution?

Fundamental question?

- Can we prove all the mathematical statements that we can formulate? (Hilbert's $2^{\text {nd }}$ problem)
- Certainly, there are many mathematical problems that we do not know how to solve.
- Is this just because we are not smart enough to find a solution?
- Or, is there somethinq deeper qoinq on ?
computer science version of these questions

computer science version
 of these questions

- If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to solve this problem in an efficient manner ???

computer science version
 of these questions

- If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to solve this problem in an efficient manner ???
- Are there some problems that cannot be solved at all ? and, are there problems that cannot be solved efficiently ?? (related to Hilbert's $10^{\text {th }}$ problem)

Kurt Gödel

Kurt Gödel

- In 1931, he proved that any formalization of mathematics contains some statements that cannot be proved or disproved.

Alan Turing

Alan Turing

- In 1934, he formalized the notion of decidability of a language by a computer.

A Language

A Language

- Let Σ be a finite alphabet. (ex: $\{0,1\}$)

A Language

- Let Σ be a finite alphabet. (ex: $\{0,1\}$)
- Let Σ^{*} be all sequences of elements from this alphabet. (ex: $0,1,00000,0101010101, \ldots$)

A Language

- Let Σ be a finite alphabet. (ex: $\{0,1\}$)
- Let Σ^{*} be all sequences of elements from this alphabet. (ex: 0, 1, 00000, 0101010101,...)
- A language L is any subset of Σ^{*}.

A Language

- Let Σ be a finite alphabet. (ex: $\{0,1\}$)
- Let Σ^{*} be all sequences of elements from this alphabet. (ex: 0, 1, 00000, 0101010101,...)
- A language L is any subset of Σ^{*}.
- An algorithm decides a language if it answers Yes when X is in L and No otherwise

Comparing Cardinalities

Comparing Cardinalities

All languages

Comparing Cardinalities

Comparing Cardinalities

Comparing Cardinalities

Comparing Cardinalities

Alonzo Church

Alonzo Church

- In 1936, he proved that certain languages cannot be decided by any algorithm whatsoever...

Emil Post

Emil Post

- In 1946, he gave a very natural example of an undecidable language...

(PCP) Post Correspondence Problem

(PCP) Post

Correspondence Problem

- An instance of PCP with 6 tiles.

(PCP) Post

Correspondence Problem

- An instance of PCP with 6 tiles.
- A solution to PCP

(PCP) Post

Correspondence Problem

- An instance of PCP with 6 tiles.
- A solution to PCP

aa
a

(PCP) Post

Correspondence Problem

- An instance of PCP with 6 tiles.
- A solution to PCP

$a a$	$b b b$
a	a

(PCP) Post

Correspondence Problem

- An instance of PCP with 6 tiles.
- A solution to PCP

$a a$	$b b b$	b
a	a	

(PCP) Post

Correspondence Problem

- An instance of PCP with 6 tiles.
- A solution to PCP

$a a$	$b b b$	b	
a	a		$b b$

(PCP) Post

Correspondence Problem

- An instance of PCP with 6 tiles.
- A solution to PCP

$a a$	$b b b$	b		
a	a		$b b$	$b b$

Post

Correspondence Problem

Post

\section*{Correspondence Problem
 | u_{1} | u_{2} | u_{3} | \ldots | u_{n} |
| :--- | :--- | :--- | :--- | :--- |
| v_{1} | v_{2} | v_{3} | \ldots | v_{n} |}

- Given n tiles, $u_{1} / v_{1} \ldots u_{n} / v_{n}$ where each u_{i} or v_{i} is a sequence of letters.

Post

\section*{Correspondence Problem
 | u_{1} | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| v_{1} | u_{2} | u_{3}
 v_{2} | \ldots | u_{n} |
| v_{3} | | | | |$\quad \cdots .$| v_{n} |
| :--- |}

- Given n tiles, $u_{1} / v_{1} \ldots u_{n} / v_{n}$ where each u_{i} or v_{i} is a sequence of letters.
- Is there $a k$ and a sequence $\left\langle i_{1}, i_{2}, i_{3}, \ldots, i_{k}\right\rangle$ (with each $1 \leq i_{j} \leq n$) such that $u_{i 1}\left|u_{i 2}\right| u_{i 3}|\ldots| u_{i k}=v_{i 1}\left|v_{i 2}\right| v_{i 3}|\ldots| v_{i k} ?$

A Solution to Post Correspondence Problem

A Solution to Post

Correspondence Problem

u_{1}				
v_{1}	u_{2} v_{2}	u_{3} v_{3}	\ldots	u_{n} v_{n}

A Solution to Post

Correspondence Problem

u_{1}	u_{2} v_{1}	u_{3} v_{2}	\ldots	u_{n}		
v_{3}					$\quad \ldots$	
:---						
v_{n}						

- A solution is of this form: with the top and bottom strings identical.

A Solution to Post

Correspondence Problem

u_{1}	u_{2} v_{1}	u_{3} v_{2}	\ldots	u_{n}		
v_{3}					$\quad \ldots .$	v_{n}
:---						

- A solution is of this form: with the top and bottom strings identical.

$u_{i 1}$ $v_{i 1}$	$\begin{aligned} & u_{i 2} \\ & v_{i 2} \end{aligned}$	$\begin{aligned} & u_{i 3} \\ & v_{i 3} \end{aligned}$	$\begin{aligned} & u_{i_{4}} \\ & v_{i_{4}} \end{aligned}$	$\begin{aligned} & u_{i 5} \\ & v_{i 5} \end{aligned}$	u_{i} $V_{i k}$

Post

Correspondence Problem

Post

Correspondence Problem

- Theorem:

The Post Correspondence Problem cannot be decided by any algorithm (or computer program). In particular, no algorithm can identify in a finite amount of time the instances that have a negative outcome. However, if a solution exists, we can find it.

Post

Correspondence Problem

Post

Correspondence Problem

- Proof:

Reduction technique - if PCP was decidable then another undecidable problem would be decidable.

The Halting Problem

The Halting Problem

- Notice that an algorithm is a piece of text.

The Halting Problem

- Notice that an algorithm is a piece of text.
- An algorithm can receive text as input.

The Halting Problem

(6) Notice that an algorithm is a piece of text.

6. An algorithm can receive text as input.

- An algorithm can receive an algorithm as input.

The Halting Problem

(2) Notice that an algorithm is a piece of text.

- An algorithm can receive text as input.

6. An algorithm can receive an algorithm as input.

- The Halting Problem:

Given two texts A, B, consider A as an algorithm and B as an input. Will algorithm A halt (as opposed to loop forever) on input B?

The Halting Problem

The Halting Problem

- Theorem: no algorithm can decide the Halting Problem.

The Halting Problem

- Theorem: no algorithm can decide the Halting Problem.
- Proof: Assume for a contradiction that an algorithm $\operatorname{Halt}(A, B)$ exists to decide the Halting Problem.

The Halting Problem

The Halting Problem

- Consider the Algorithm:

Bug(A)
if Halt (A, A) then While True do
\{ when $\operatorname{Halt}(A, A)$ is true then Bug(A) loops \} \{ when $\operatorname{Halt}(A, A)$ is false then $\operatorname{Bug}(A)$ halts \}

The Halting Problem

- Consider the Algorithm:

Bug(A)
if $\operatorname{Halt}(A, A)$ then While True do
\{ when $\operatorname{Halt}(A, A)$ is true then Bug(A) loops \} \{ when $\operatorname{Halt}(A, A)$ is false then $\operatorname{Bug}(A)$ halts \}

- Question: What is the outcome of Bug(Bug)?

The Halting Problem

The Halting Problem

- If Bug(Bug) does not loop forever it is because Halt(Bug,Bug)=False which means Bug(Bug) loops forever. (contradiction)

The Halting Problem

- If Bug(Bug) does not loop forever it is because Halt(Bug,Bug)=False which means Bug(Bug) loops forever. (contradiction)
- If Bug(Bug) loops forever it is because Halt(Bug,Bug)=True which means Bug(Bug) does not loop forever. (contradiction)

The Halting Problem

- If Bug(Bug) does not loop forever it is because Halt(Bug,Bug)=False which means Bug(Bug) loops forever. (contradiction)
- If Bug(Bug) loops forever it is because Halt(Bug,Bug)=True which means Bug(Bug) does not loop forever. (contradiction)
- Conclusion: Halt cannot exist.

The Halting Problem and PCP

The Halting Problem and PCP

- Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem.

The Halting Problem and PCP

- Any algorithm to decide PCP can be converted to an algorithm to decide the Halting Problem.
- Conclusion: PCP cannot be decided either.

Computability Theory

Computability

Theory

All languages

Computability

Theory

All languages
languages that we can describe

Computability

Theory

COMP 102A 2013

Decidable ? Some times we just don't know...

 COMP 102A 2013
Syracuse Conjecture

Syracuse Conjecture

$\{$

Syracuse Conjecture

- For any integer $n>0$ define the following sequence:

$$
S_{1}=n, S_{i+1}= \begin{cases}S_{i} / 2 & \text { if } S_{i} \text { is even, } \\ 3 S_{i+1} & \text { if } S_{i} \text { is odd. }\end{cases}
$$

Syracuse Conjecture

- For any integer $n>0$ define the following sequence:

$$
S_{1}=n, S_{i+1}= \begin{cases}S_{i} / 2 & \text { if } S_{i} \text { is even, } \\ 3 S_{i+1} & \text { if } S_{i} \text { is odd. }\end{cases}
$$

- Syracuse(n)= least i s.t. $\mathrm{S}_{1}=\mathrm{n}, \ldots, \mathrm{S}_{\mathrm{i}}=1$

0 if $\mathrm{S}_{\mathrm{i} \neq 1}$ for all i .

Syracuse Conjecture

- For any integer $n>0$ define the following sequence:

$$
S_{1}=n, S_{i+1}= \begin{cases}S_{i} / 2 & \text { if } S_{i} \text { is even, } \\ 3 S_{i+1} & \text { if } S_{i} \text { is odd. }\end{cases}
$$

- Syracuse $(n)=\left\{\begin{array}{l}\text { least } i \text { s.t. } S_{1}=n, \ldots, S_{i}=1 \\ 0 \text { if } S_{i} \neq 1 \text { for all } i .\end{array}\right.$

Syracuse Conjecture

- Example: Syracuse(9) = 20

Syracuse Conjecture

- Example: Syracuse(9) $=20$
(2) $\mathrm{S}_{1}=9, \mathrm{~S}_{2}=28, \mathrm{~S}_{3}=14, \mathrm{~S}_{4}=7, \mathrm{~S}_{5}=22, \mathrm{~S}_{6}=11, \mathrm{~S}_{7}=34$, $S_{8}=17, S_{9}=52, S_{10}=26, S_{11}=13, S_{12}=40, S_{13}=20$, $S_{14}=10, S_{15}=5, S_{16}=16, S_{17}=8, S_{18}=4, S_{19}=2, S_{20}=1$

Syracuse Conjecture

Syracuse Conjecture

- For all n that we have computed so far, Syracuse $(n)>0$.

Syracuse Conjecture

- For all n that we have computed so far, Syracuse
- Conjecture
for all $n>0, \quad$ Syracuse(n) >0

Syracuse Conjecture

- For all n that we have computed so far, syracuse
- Conjecture
for all $n>0, \quad$ Syracuse(n) >0
- If there exists N such that $\operatorname{Syracuse}(N)=0$ we might not be able to prove it.

Syracuse Conjecture

Syracuse Conjecture

- The Syracuse conjecture is believed to be true but no proof of that statement was discovered so far. It is an open problem.

Syracuse Conjecture

- The Syracuse conjecture is believed to be true but no proof of that statement was discovered so far. It is an open problem.
- Even worse, it might be decidable but there might be no proof that it is !!!

Complexity and Tractability
 COMP 102A, Lecture 13

Not all problems

 were born equal...
Not all problems

 were born equal...

Is it possible to paint a colour on each region of a map so that no neighbours are of the same colour?

Obviously, yes, if you can use as many colours as you like...

2 colouring problem

3 colouring problem

4 colouring problem

K-colouring of

 Maps (planar graphs)
K-colouring of

Maps (planar graphs)

- K=1, only the map with zero or one region are 1-colourable.

K-colouring of

Maps (planar graphs)

- K=1, only the map with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.

K-colouring of

Maps (planar graphs)

- K=1, only the map with zero or one region are 1-colourable.
- K=2, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.

K-colouring of

Maps (planar graphs)

(2 $K=1$, only the map with zero or one region are 1-colourable.

- $K=2$, easy to decide. Impossible as soon as 3 regions touch each other.
- K=3, No known efficient algorithm to decide. However it is easy to verify a solution.
- K ≥ 4, all maps are K-colourable. (hard proof) Does not imply easy to find a K-colourinq.

3-colouring of Maps

3-colouring of Maps

- Seems hard to solve in general,

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given,

3-colouring of Maps

- Seems hard to solve in general,
- Is easy to verify when a solution is given,
- Is a special type of problem (NP-complete) because an efficient solution to it would yield efficient solutions to MANY similar problems !

Examples of NP-Complete Problems

Examples of
 NP-Complete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?

Examples of

NP-Complete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.

Examples of

NP-Complete Problems

- SAT: given a boolean formula, is there an assignment of the variables making the formula evaluate to true?
- Travelling Salesman: given a set of cities and distances between them, what is the shortest route to visit each city once.
- KnapSack: given items with various weights, is there of subset of them of total weight K.

NP-Complete Problems

NP-Complete Problems

- Many practical problems are NP-complete.

NP-Complete Problems

- Many practical problems are NP-complete.
- Some books list hundreds of such problems.

NP-Complete Problems

- Many practical problems are NP-complete.
- Some books list hundreds of such problems.
- If any of them is easy, they are all easy.

NP-Complete Problems

- Many practical problems are NP-complete.
- Some books list hundreds of such problems.
- If any of them is easy, they are all easy.
- In practice, some of them may be solved efficiently in some special cases.

Tractable Problems (P)

Tractable Problems (P)

- 2-colorability of maps.

Tractable Problems (P)

- 2-colorability of maps.
© Primality testing.

Tractable Problems (P)

- 2-colorability of maps.
© Primality testing.
- Solving NxNxN Rubik's cube.

Tractable Problems (P)

- 2-colorability of maps.
(Primality testing.
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.

Tractable Problems (P)

- 2-colorability of maps.
(2) Primality testing.
- Solving NxNxN Rubik's cube.
- Finding a word in a dictionary.
- Sorting elements.

Tractable Problems (P)

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for PolynomialTime computable.

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for PolynomialTime computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.

Tractable Problems (P)

- Fortunately, many practical problems are tractable. The name P stands for PolynomialTime computable.
- Computer Science studies mostly techniques to approach and find efficient solutions to tractable problems.
- Some problems may be efficiently solvable but we might not be able to prove that...

Tractable Problems (P)

Tractable Problems (P)

- 2-colorability of maps. $O(n)$ time

Tractable Problems (P)

- 2-colorability of maps. $O(n)$ time
- Primality testing. $O\left(n^{6}\right)$ time

Tractable Problems (P)

- 2-colorability of maps. $O(n)$ time
(2 Primality testing. $O\left(n^{6}\right)$ time
- Solving $N \times N \times N$ Rubik's cube. $O\left(N^{2} / \log N\right)$ time

Tractable Problems (P)

- 2-colorability of maps. $O(n)$ time
- Primality testing. $O\left(n^{6}\right)$ time
- Solving $N \times N \times N$ Rubik's cube. $O\left(N^{2} / \log N\right)$ time
- Finding a word in a dictionary. O(log $N)$ time

Tractable Problems (P)

- 2-colorability of maps. $O(\mathrm{n})$ time
- Primality testing. $O\left(n^{6}\right)$ time
- Solving $N \times N \times N$ Rubik's cube. $O\left(N^{2} / \log N\right)$ time
- Finding a word in a dictionary. O(log $N)$ time
- Sorting elements. $O(N \log N)$ time

Complexity

Theory
Decidable
Languages

Complexity

Theory

Decidable
Languages

NP

Complexity

Theory
Decidable
Languages

NP

Complexity

Theory

Decidable
Languages

Complexity

Theory
Decidable
Languages

NP
$P=N P ?$

Beyond NP-Completeness

Beyond NP-Completeness

- P-Space Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.

Beyond NP-Completeness

- P-Space Completeness: problems that require a reasonable (Poly) amount of space to be solved but may use very long time though.
- Many such problems. If any of them may be solved within reasonable (Poly) amount of time, then all of them can.

P-Space Completeness

P-Space Completeness

- Geography Game:

Given a set of country names: Afghanistan, Algeria, Canada, France, Japan, North Korea.

P-Space Completeness

- Geography Game:

Given a set of country names: Afghanistan, Algeria, Canada, France, Japan, North Korea.

- A two player game: One player chooses a name. The other player must choose a name that starts with the last letter of the previous name and so on. A player wins when his opponent cannot play any name.

Generalized Geography

Generalized Geography

- Given an arbitrary set of names: w_{1}, \ldots, w_{n}.

Generalized Geography

- Given an arbitrary set of names: w_{1}, \ldots, w_{n}.
- Is there a winning strategy for the first player to the previous game?

Complexity

Theory
Decidable
Languages

P-Space

NP

Complexity

Theory

Decidable
Languages

P-Space

NP = P-Space ?

Theoretical

 Computer Science
Theoretical Computer Science

- Challenges of TCS:

Theoretical Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems.

Theoretical Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems.
- PROVE that certain problems are NOT computable within a certain time or space. (With applications to cryptography)

Theoretical

Computer Science

- Challenges of TCS:
- FIND efficient solutions to many problems.
- PROVE that certain problems are NOT computable within a certain time or space. (With applications to cryptography)
- Consider new models of computation. (Such as a Quantum Computer)

Afghanistan

Afghanistan 2

Albania	Armenia
Albania 2	Armenia 2
Albania 3	Australia
Albania 4	Australia 2
Algeria	Australia 3
Andorra	Austria
Andorra 2	Austria 2
Angola	Azerbaijan
Angola 2	Azerbaijan 2
Antigua and Barbuda	Bahamas, The

Antigua and Barbuda 2

Argentina

Armenia

Armenia 2

Australia

Australia 2

Australia 3

PCP with constraints

- input $\left(a^{n_{1}} / a^{m_{1}}\right),\left(a^{n_{2}} / a^{m_{2}}\right)$
- find $k_{1}, k_{2} \geq 0$ s.t. $k_{1} n_{1}+k_{2} n_{2}=k_{1} m_{1}+k_{2} m_{2}$
- find $k_{1}, k_{2} \geq 0$ s.t $k_{1}\left(n_{1}-m_{1}\right)=k_{2}\left(m_{2}-n_{2}\right)$
- if $n_{1}=m_{1}$ then set $k_{1}=1, k_{2}=0$
- else if $n_{2}=m_{2}$ then set $k_{1}=0, k_{2}=1$
- else if $\left(n_{1}-m_{1}\right)\left(n_{2}-m_{2}\right)<0$ then set $k_{1}=\left|n_{2}-m_{2}\right|, k_{2}=\left|n_{1}-m_{1}\right|$
- else no solution exists

