

Chapter 13

Randomized Alaorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.
13.1 Contention Resolution

Contention Resolution in a Distributed System

Contention resolution. Given n processes P_{1}, \ldots, P_{n}, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can' \dagger communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time \dagger with probability $p=1 / n$.

Claim. Let $S[i, t]=$ event that process i succeeds in accessing the database at time t. Then $1 /(e \cdot n) \leq \operatorname{Pr}[S(i, t)] \leq 1 /(2 n)$.

Claim. The probability that process i fails to access the database in en rounds is at most $1 / e$. After $e \cdot n(c \ln n)$ rounds, the probability is at most n^{-c}.

Claim. The probability that all processes succeed within $2 e \cdot n \ln n$ rounds is at least $1-1 / n$.

13.3 Linearity of Expectation

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.

13.5 Randomized Divide-and-Conquer

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

```
RandomizedQuicksort(S) {
    if |S| = 0 return
    choose a splitter a }\mp@subsup{a}{i}{}\inS\mathrm{ uniformly at random
    foreach (a S S) {
        if (a< a i) put a in S'
        else if (a> a i})\mathrm{ put a in S'
    }
    RandomizedQuicksort(S`)
    output a i
    RandomizedQuicksort(S+)
}
```

Remark. Can implement in-place.

Quicksort

Running time.

- [Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta\left(n^{2}\right)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_{1}<x_{2}<\ldots<x_{n}$.

Quicksort: Expected Number of Comparisons

Theorem. Expected \# of comparisons is $O(n \log n)$.

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65 n$.

Ex. If $n=1$ million, the probability that randomized quicksort takes less than $4 n \ln n$ comparisons is at least 99.94%.

Chebyshev's inequality. $\operatorname{Pr}[|X-\mu| \geq k \delta] \leq 1 / k^{2}$.

Quicksort: Expected Number of Comparisons

The expected number of comparisons in a randomized Quicksort of n elements is (γ is Euler's constant near 0.577) :

$$
q_{n}=2 n \ln n-(4-2 \gamma) n+2 \ln n+O(1) .
$$

In 1996, McDiarmid and Hayward have formulated an exact expression for the probability that the number of comparisons $\boldsymbol{Q}_{\boldsymbol{n}}$ be far from its average $\boldsymbol{q}_{\boldsymbol{n}}$

$$
\operatorname{Pr}\left[\left|\frac{Q_{n}}{q_{n}}-1\right|>\varepsilon\right]=n^{-(2+o(1)) \varepsilon \ln ^{(2)} n}
$$

Let c be a positive constant. McDiarmid and Hayward's formula imply that there exists another positive constant a smaller than 1 such that

$$
\operatorname{Pr}\left[\boldsymbol{Q}_{\boldsymbol{n}} \in \Theta\left(n^{1+c}\right)\right]<a^{n^{c}} .
$$

